Реферат: Временные ряды. Цели, этапы и методы анализа временных рядов Модели сезонной компоненты

Введение

В данной главе рассматриваются задачи описания упорядоченных данных, полученных последовательно (во времени). Вообще говоря, упорядоченность может иметь место не только во времени, но и в пространстве, например, диаметр нити как функция её длины (одномерный случай), значение температуры воздуха как функция пространственных координат (трёхмерный случай).

В отличие от регрессионного анализа, где порядок строк в матрице наблюдений может быть произвольным, во временных рядах важна упорядоченность, а следовательно, интерес представляет взаимосвязь значений, относящихся к разным моментам времени.

Если значения ряда известны в отдельные моменты времени, то такой ряд называют дискретным , в отличие от непрерывного , значения которого известны в любой момент времени. Интервал между двумя последовательными моментами времени назовём тактом (шагом) . Здесь будут рассматриваться в основном дискретные временные ряды с фиксированной протяжённостью такта, принимаемой за единицу счёта. Заметим, что временные ряды экономических показателей, как правило, дискретны.

Значения ряда могут быть измеряемыми непосредственно (цена, доходность, температура), либо агрегированными (кумулятивными) , например, объём выпуска; расстояние, пройдённое грузоперевозчиками за временной такт.

Если значения ряда определяются детерминированной математической функцией, то ряд называют детерминированным . Если эти значения могут быть описаны лишь с привлечением вероятностных моделей, то временной ряд называют случайным .

Явление, протекающее во времени, называют процессом , поэтому можно говорить о детерминированном или случайном процессах. В последнем случае используют часто термин “стохастический процесс” . Анализируемый отрезок временного ряда может рассматриваться как частная реализация (выборка) изучаемого стохастического процесса, генерируемого скрытым вероятностным механизмом.

Временные ряды возникают во многих предметных областях и имеют различную природу. Для их изучения предложены различные методы, что делает теорию временных рядов весьма разветвленной дисциплиной. Так, в зависимости от вида временных рядов можно выделить такие разделы теории анализа временных рядов:

– стационарные случайные процессы, описывающие последовательности случайных величин, вероятностные свойства которых не изменяются во времени. Подобные процессы широко распространены в радиотехнике, метереологии, сейсмологии и т. д.

– диффузионные процессы, имеющие место при взаимопроникновении жидкостей и газов.

– точечные процессы, описывающие последовательности событий, таких как поступление заявок на обслуживание, стихийных и техногенных катастроф. Подобные процессы изучаются в теории массового обслуживания.

Мы ограничимся рассмотрением прикладных аспектов анализа временных рядов, которые полезны при решении практических задач в экономике, финансах. Основной упор будет сделан на методы подбора математической модели для описания временного ряда и прогнозирования его поведения.

1.Цели, методы и этапы анализа временных рядов

Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:

– описание характерных особенностей ряда в сжатой форме;

– построение модели временного ряда;

– предсказание будущих значений на основе прошлых наблюдений;

– управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.

Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.

Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:

1) графическое представление и описание поведения ряда;

2) выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;

3) исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;

4) построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;

5) прогнозирование будущих значений ряда.

При анализе временных рядов используются различные методы, наиболее распространенными из которых являются:

1) корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);

2) спектральный анализ, позволяющий находить периодические составляющие временного ряда;

3) методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;

5) методы прогнозирования.

2.Структурные компоненты временного ряда

Как уже отмечалось, в модели временного ряда принято выделять две основные составляющие: детерминированную и случайную (рис.). Под детерминированной составляющей временного ряда

понимают числовую последовательность , элементы которой вычисляются по определенному правилу как функция времени t . Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять чисто случайные скачки, а в другом – плавное колебательное движение. В большинстве случаев будет нечто среднее: некоторая иррегулярность и определенный систематический эффект, обусловленный зависимостью последовательных членов ряда.

В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты:

1) тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать: а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления.

2) сезонный эффект s , связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты.


Рис. Структурные компоненты временного ряда.

Типичные примеры сезонного эффекта: изменение загруженности автотрассы в течение суток, по дням недели, временам года, пик продаж товаров для школьников в конце августа - начале сентября. Сезонная компонента со временем может меняться, либо носить плавающий характер. Так на графике объема перевозок авиалайнерами (см рис.) видно, что локальные пики, приходящиеся на праздник Пасхи «плавают» из-за изменчивости ее сроков.

Циклическая компонента c , описывающая длительные периоды относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Подобная компонента весьма характерна для рядов макроэкономических показателей. Циклические изменения обусловлены здесь взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т. п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда.

«Взрывная» компонента i , иначе интервенция, под которой понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника» 1994г., когда курс доллара за день вырос на несколько десятков процентов.

Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру, начиная от простейшей в виде «белого шума» до весьма сложных, описываемых моделями авторегрессии-скользящего среднего (подробнее дальше).

После выделения структурных компонент необходимо специфицировать форму их вхождения во временной ряд. На верхнем уровне представления с выделением лишь детерминированной и случайной составляющих обычно используют аддитивную либо мультипликативную модели.

Аддитивная модель имеет вид

;

мультипликативная –

Зачем нужны графические методы. В выборочных исследованиях простейшие числовые характеристики описательной статистики (среднее, медиана, дисперсия, стандартное отклонение) обычно дают достаточно информативное представление о выборке. Графические методы представления и анализа выборок при этом играют лишь вспомогательную роль, позволяя лучше понять локализацию и концентрацию данных, их закон распределения.

Роль графических методов при анализе временных рядов совершенно иная. Дело в том, что табличное представление временного ряда и описательные статистики чаще всего не позволяют понять характер процесса, в то время как по графику временного ряда можно сделать довольно много выводов. В дальнейшем они могут быть проверены и уточнены с помощью расчетов.

При анализе графиков можно достаточно уверенно определить:

· наличие тренда и его характер;

· наличие сезонных и циклических компонент;

· степень плавности или прерывистости изменений последовательных значений ряда после устранения тренда. По этому показателю можно судить о характере и величине корреляции между соседними элементами ряда.

Построение и изучение графика. Построение графика временного ряда – совсем не такая простая задача, как это кажется на первый взгляд. Современный уровень анализа временных рядов предполагает использование той или иной компьютерной программы для построения их графиков и всего последующего анализа. Большинство статистических пакетов и электронных таблиц снабжено теми или иными методами настройки на оптимальное представление временного ряда, но даже при их использовании могут возникать различные проблемы, например:

· из-за ограниченности разрешающей способности экранов компьютеров размеры выводимых графиков могут быть также ограничены;

· при больших объемах анализируемых рядов точки на экране, изображающие наблюдения временного ряда, могут превратиться в сплошную черную полосу.

Для борьбы с этими затруднениями используются различные способы. Наличие в графической процедуре режима «лупы» или «увеличения» позволяет изобразить более крупно выбранную часть ряда, однако при этом становится трудно судить о характере поведения ряда на всем анализируемом интервале. Приходится распечатывать графики для отдельных частей ряда и состыковыватьих вместе, чтобы увидеть картину поведения ряда в целом. Иногда для улучшения воспроизведения длинных рядов используется прореживание, то есть выбор и отображение на графике каждой второй, пятой, десятой и т.д. точки временного ряда. Эта процедура позволяет сохранить целостное представление ряда и полезна для обнаружения трендов. На практике полезно сочетание обеих процедур: разбиения ряда на части и прореживания, так как они позволяют определить особенности поведения временного ряда.

Еще одну проблему при воспроизведении графиков создают выбросы – наблюдения, в несколько раз превышающие по величине большинство остальных значений ряда. Их присутствие тоже приводит к неразличимости колебаний временного ряда, так как масштаб изображения программа автоматически подбирает так, чтобы все наблюдения поместились на экране. Выбор другого масштаба на оси ординат устраняет эту проблему, но резко отличающиеся наблюдения при этом остаются за границами экрана.

Вспомогательные графики. При анализе временных рядов часто используются вспомогательные графики для числовых характеристик ряда:

· график выборочной автокорреляционной функции (коррелограммы) с доверительной зоной (трубкой) для нулевой автокорреляционной функции;

· график выборочной частной автокорреляционной функции с доверительной зоной для нулевой частной автокорреляционной функции;

· график периодограммы.

Первые дваиз этих графиков позволяют судить о связи (зависимости) соседних значений временного рада, они используются при подборе параметрических моделей авторегрессии и скользящего среднего. График периодограммы позволяет судить о наличии гармонических составляющих во временном ряде.

Пример анализа временных рядов

Покажем последовательность анализа временных рядов на следующем примере. В таблице 8 приведены в относительных единицах данные продаж продовольственных товаров в магазине (Y t ). Разработать модель продаж и провести прогнозирование объема продаж на первые 6 месяцев 1996 года. Выводы обосновать.

Таблица 8

Месяц Y t

Построим график этой функции (рис. 8).

Анализ графика показывает:

· Временной ряд имеет тренд, весьма близкий к линейному.

· Существует определенная цикличность (повторяемость) процессов продаж с периодом цикла 6 месяцев.

· Временный ряд нестационарный, для приведения его к стационарному виду из него необходимо удалить тренд.

После перерисовки графика с периодом 6 месяцев он будет иметь следующий вид (рис.9). Так как колебания объемов продаж достаточно велики (это видно по графику) необходимо провести его сглаживание для более точного определения тренда.

Существует несколько подходов к сглаживанию временного временных рядов:

Ø Простое сглаживание.

Ø Метод взвешенной скользящей средней.

Ø Метод экспоненциального сглаживания Брауна.

Простое сглаживание основано на преобразовании исходного ряда в другой, значения которого являются усредненными по трем рядом стоящим точкам временного ряда:

(3.10)

для 1-го члена ряда

(3.11)

для n -го (последнего) члена ряда

(3.12)

Метод взвешенной скользящей средней отличается от простого сглаживания тем, что включает параметр w t , который позволяет вести сглаживание по 5 или 7 точкам

для полиномов 2-го и 3-го порядков значение параметра w t определяется из следующей таблицы

m = 5 -3 -3
m = 7 -2 -2

Метод экспоненциального сглаживания Брауна использует предшествующие значений ряда, взятые с определенным весом. Причем вес уменьшается по мере удаления его от текущего времени

, (3.14)

где а – параметр сглаживания (1 > a > 0);

(1 - а) – коэф. дисконтирования.

S o обычно выбирается равным Y 1 или среднему из первых трех значений ряда.

Проведем простое сглаживание ряда. Результаты сглаживания ряда приведены в таблице 9. Полученные результаты представлены графически на рис.10. Повторное применение процедуры сглаживания к временному ряду позволяет получить более гладкую кривую. Результаты расчетов повторного сглаживания также представлены в таблице 9. Найдем оценки параметров линейной модели тренда по методике, рассмотренной в предыдущем разделе. Результаты расчетов следующие:

Множественный R 0,933302
R-квадрат 0,871052
`a 0 = 212,9729043 `t = 30,26026442 `a 1 = 5,533978254 `t = 13,50506944 F = 182,3869

Уточненный график с линией тренда и моделью тренда представлен на рис. 12.

Месяц Y t Y 1t Y 2t

Таблица 9


Рис. 12

Следующий этап заключается в удалении тренда из исходного временного ряда.



Для удаления тренда вычтем из каждого элемента первоначального ряда значения, рассчитанные по модели тренда. Полученные значения представим графически на рис.13.

Полученные остатки, как видно из рис. 13, группируются около нуля, а это значит, что ряд близок к стационарному.

Для построения гистограммы распределения остатков рассчитывают интервалы группирования остатков ряда. Количество интервалов определяют из условия среднего попадания в интервал 3-4 наблюдения. Для нашего случая возьмем 8 интервалов. Размах ряда (крайние значения) от –40 до +40. Ширина интервала определяется как 80/8 =10. Границы интервалов рассчитываются от минимального значения размаха полученного ряда

-40 -30 -20 -10

Теперь определим накопленные частоты попадания остатков ряда в каждый интервал и нарисуем гистограмму (рис.14).

Анализ гистограммы показывает, что остатки группируются около 0. Однако в области от 30 до 40 есть некоторый локальный выброс, который свидетельствует о том, что не учтены и не удалены из исходного временного ряда некоторые сезонные или циклически компоненты. Более точно о характере распределения и его принадлежности к нормальному распределению можно сделать выводы после проверки статистической гипотезы о характере распределения остатков. При ручной обработке рядов обычно ограничиваются визуальным анализом полученных рядов. При обработке на ЭВМ существует возможность более полного анализа.

Что же является критерием завершения анализа временного ряда? Обычно исследователи используют два критерия, отличающихся от критериев качества модели при корреляционно-регрессионном анализе.

Первый критерий качества подобранной модели временного ряда основан на анализе остатков ряда после удаления из него тренда и других компонент. Объективные оценки основаны на проверке гипотезы о нормальном распределении остатков и равенстве нулю выборочного среднего. При ручных методах расчета иногда оценивают показатели ассиметрии и эксцесса полученного распределения. Если они близки к нулю, то распределение считается близким к нормальному. Ассиметрия , А рассчитывается как:

В том случае, если A < 0, то эмпирическое распределение несимметрично и сдвинуто вправо. При A > 0 распределение имеет сдвиг влево. При A = 0 распределение симметрично.

Эксцесс , Е. Показатель, характеризующий выпуклость или вогнутость эмпирических распределений

В том случае, если Е больше или равно нулю, то распределение выпукло, в других случаях вогнуто.

Второй критерий основан на анализе коррелограммы преобразованного временного ряда. В том случае, если корреляции между отдельными измерениями отсутствуют или меньше заданного значения (обычно 0.1) считается, что все компоненты ряда учтены и удалены и остатки не коррелированы между собой. В остатках ряда осталась некая случайная компонента, которая называется «белый шум».

Резюме

Применение методов анализа временных рядов в экономике позволяет сделать обоснованный прогноз изменения исследуемых показателей при определенных условиях и свойствах временного ряда. Временной ряд должен быть достаточного объема и содержать не менее 4 циклов повторения исследуемых процессов. Кроме того, случайная компонента ряда не должна быть соизмеримой с другими циклическими и сезонными компонентами ряда. В этом случае получаемые оценки прогноза имеют практический смысл.

Литература

Основная:

1. Магнус Я.Р., Катышев П.К., Пересецкий А.А. Эконометрика: Начальный курс. Акад. нар. хоз-ва при Правительстве РФ. – М.: Дело, 1997. – 245 с.

2. Доугерти К. Введение в эконометрику. – М.: ИНФРА-М, 1997. – 402 с.

Дополнительная:

1. Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. – М.: Юнити, 1998. – 1022 с.

2. Многомерный статистический анализ в экономике / Под ред. В.Н. Тамашевича. – М.: Юнити-Дана, 1999. – 598 с.

3. Айвазян С.А., Енюков Й.С., Мешалкин Л.Д. Прикладная статистика. Основы моделирования и первичная обработка данных. – М.: Финансы и статистика, 1983.

4. Айвазян С.А., Енюков Й.С., Мешалкин Л.Д. Прикладная статистика. Исследование зависимостей. – М.: Финансы и статистика, 1985.

5. Айвазян С.А., Бухштабер В.М., Енюков С.А., Мешалкин Л.Д. Прикладная статистика. Классификация и снижение размерности. – М.: Финансы и статистика, 1989.

6. Бард Й. Нелинейное оценивание параметров. – М.: Статистика, 1979.

7. Демиденко Е.З. Линейная и нелинейная регрессия. – М.: Финансы и статистика, 1981.

8. Джонстон Д. Эконометрические методы. – М.: Статистика, 1980.

9. Дрейпер Н., Смит Г. Прикладной регрессионный анализ. В 2-х кн. – М.: Финансы и статистика, 1986.

10. Себер Дж. Линейный регрессионный анализ. – М.: Мир, 1980.

11. Андерсон Т. Cтатистический анализ временных рядов. – М.: Мир, 1976.

12. Бокс Дж., Дженкинс Г. Анализ временных рядов. Прогноз и управление. (Вып. 1, 2). – М.: Мир, 1972.

13. Дженкинс Г., Ваттс Д. Cпектральный анализ и его применения. – М.: Мир, 1971.

14. Гренджер К., Хатанака М. Cпектральный анализ временных рядов в экономике. – М.: Статистика, 1972.

15. Кендэл М. Временные ряды. – М.: Финансы и статистика, 1981.

16. Вапник В.Н. Восстановление зависимостей по эмпирическим данным. – М.: Наука, 1979.

17. Дюран Б., Оделл П. Кластерный анализ. – М.: Статистика, 1977.

18. Ермаков C.М., Жиглявский А.А. Математическая теория оптимального эксперимента. – М.: Наука, 1982.

19. Лоули Д., Максвелл А. Факторный анализ как статистический метод. – М.: Мир, 1967.

20. Розин Б.Б. Теория распознавания образов в экономических исследованиях. – М.: Статистика, 1973.

21. Справочник по прикладной статистике. – М.: Финансы и статистика, 1990.

22. Хьюбер П. Робастность в статистике. – М.: Мир, 1984.

23. Шеффе Г. Дисперсионный анализ. – М.: Наука, 1980.

Обзор литературы по статистическим пакетам:

1. Кузнецов С.Е. Халилеев А.А. Обзор специализированных статистических пакетов по анализу временных рядов. – М.: Статдиалог, 1991.


16.02.15 Виктор Гаврилов

44859 0

Временным рядом называется последовательность значений, изменяемых во времени. О некоторых простых, но эффективных подходах к работе с подобными последовательностями я попробую рассказать в данной статье. Примеров таких данных можно встретить очень много – котировки валют, объемы продаж, обращения клиентов, данные в различных прикладных науках (социология, метеорология, геология, наблюдения в физике) и многое другое.

Ряды являются распространенной и важной формой описания данных, так как позволяют наблюдать всю историю изменения интересующего нас значения. Это даёт нам возможность судить о «типичном» поведении величины и об отклонениях от такого поведения.

Передо мной встала задача выбрать набор данных, на котором можно было бы наглядно продемонстрировать особенности временных рядов. Я решил воспользоваться статистикой пассажиропотока на международных авиалиниях, поскольку этот набор данных весьма нагляден и стал своего рода стандартным (http://robjhyndman.com/tsdldata/data/airpass.dat , источник Time Series Data Library, R. J. Hyndman). Ряд описывает количество пассажиров международных авиалиний в месяц (в тысячах) за период с 1949 по 1960 года.

Поскольку у меня всегда под рукой , в которой есть интересный инструмент « » для работы с рядами, я воспользуюсь именно им. Перед импортом данных в файл нужно добавить столбец с датой, чтобы была привязка значений ко времени, и столбец с именем ряда для каждого наблюдения. Ниже видно, как выглядит мой исходный файл, который я импортировал в Prognoz Platform с помощью мастера импорта непосредственно из инструмента анализа временных рядов.

Первое, что мы обычно делаем с временным рядом, это отображаем его на графике. Prognoz Platform позволяет построить график, просто «перетащив» ряд в рабочую книгу.

Временной ряд на графике

Символ ‘M’ в конце имени ряда означает, что ряд имеет месячную динамику (интервал между наблюдениями равен одному месяцу).

Уже из графика мы видим, что ряд демонстрирует две особенности:

  • тренд – на нашем графике это долгосрочный рост наблюдаемых значений. Видно, что тренд практически линейный.
  • сезонность – на графике это периодические колебания величины. В следующей статье на тему временных рядов мы узнаем, как можно вычислить период.

Наш ряд достаточно «аккуратный», однако часто встречаются ряды, которые помимо двух описанных выше характеристик демонстрируют ещё одну – наличие «шума», т.е. случайных вариаций в той или иной форме. Пример такого ряда можно увидеть на графике ниже. Это синусоидальный сигнал, смешанный со случайной величиной.

При анализе рядов нас интересует выявление их структуры и оценка всех основных компонентов – тренда, сезонности, шума и других особенностей, а также возможность строить прогнозы изменения величины в будущих периодах.

При работе с рядами наличие шума часто затрудняет анализ структуры ряда. Чтобы исключить его влияние и лучше увидеть структуру ряда, можно использовать методы сглаживания рядов.

Самый простой метод сглаживания рядов – скользящее среднее. Идея заключается в том, что для любого нечётного количества точек последовательности ряда заменять центральную точку на среднее арифметическое остальных точек:

где x i – исходный ряд, s i – сглаженный ряд.

Ниже можно увидеть результат применения данного алгоритма к двум нашим рядам. Prognoz Platform по умолчанию предлагает использовать сглаживание с размером окна в 5 точек (k в нашей формуле выше будет равно 2). Обратите внимание, что сглаженный сигнал уже не так подвержен влиянию шума, однако вместе с шумом, естественно, пропадает и часть полезной информации о динамике ряда. Также видно, что у сглаженного ряда отсутствуют первые (и также последние) k точек. Это связано с тем, что сглаживание выполняется для центральной точки окна (в нашем случае для третьей точки), после чего окно сдвигается на одну точку, и вычисления повторяются. Для второго, случайного ряда, я использовал сглаживание с окном равным 30, чтобы лучше выявить структуру ряда, так как ряд «высокочастотный», точек очень много.

Метод скользящего среднего имеет определённые недостатки:

  • Скользящее среднее неэффективно в вычислении. Для каждой точки среднее необходимо перевычислять по новой. Мы не можем переиспользовать результат, вычисленный для предыдущей точки.
  • Скользящее среднее нельзя продлить на первые и последние точки ряда. Это может вызвать проблему, если нас интересуют именно эти точки.
  • Скользящее среднее не определено за пределами ряда, и как следствие, не может использоваться для прогнозирования.

Экспоненциальное сглаживание

Более продвинутый метод сглаживания, который также можно использовать для прогнозирования – экспоненциальное сглаживание, также иногда называемое методом Хольта-Уинтерса (Holt-Winters) в честь имён его создателей.

Существует насколько вариантов данного метода:

  • одинарное сглаживание для рядов, у которых нет тренда и сезонности;
  • двойное сглаживание для рядов, у которых есть тренд, но нет сезонности;
  • тройное сглаживание для рядов, у которых есть и тренд, и сезонность.

Метод экспоненциального сглаживания вычисляет значения сглаженного ряда путём обновления значений, рассчитанных на предыдущем шаге, используя информацию с текущего шага. Информация с предыдущего и текущего шагов берётся с разными весами, которыми можно управлять.

В простейшем варианте одинарного сглаживания соотношение такое:

Параметр α определяет соотношение между несглаженным значением на текущем шаге и сглаженным значением с предыдущего шага. При α =1 мы будем брать только точки исходного ряда, т.е. никакого сглаживания не будет. При α =0 ряд мы будем брать только сглаженные значения с предыдущих шагов, т.е. ряд превратится в константу.

Чтобы понять, почему сглаживание называется экспоненциальным, нам нужно раскрыть соотношение рекурсивно:

Из соотношения видно, что все предыдущие значения ряда вносят вклад в текущее сглаженное значение, однако их вклад угасает экспоненциально за счёт роста степени параметра α .

Однако, если в данных есть тренд, простое сглаживание будет «отставать» от него (либо придётся брать значения α близкими к 1, но тогда сглаживание будет недостаточным). Нужно использовать двойное экспоненциальное сглаживание.

Двойное сглаживание использует уже два уравнения – одно уравнение оценивает тренд как разницу между текущим и предыдущим сглаженным значениями, потом сглаживает тренд простым сглаживанием. Второе уравнение выполняет сглаживание как в случае простого варианта, но во втором слагаемом используется сумма предыдущего сглаженного значения и тренда.

Тройное сглаживание включает ещё один компонент – сезонность, и использует ещё одно уравнение. При этом различаются два варианта сезонного компонента – аддитивный и мультипликативный. В первом случае амплитуда сезонного компонента постоянна и со временем не зависит от базовой амплитуды ряда. Во втором случае амплитуда меняется вместе с изменением базовой амплитуды ряда. Это как раз наш случай, как видно из графика. С ростом ряда амплитуда сезонных колебаний увеличивается.

Так как наш первый ряд имеет и тренд, и сезонность, я решил подобрать параметры тройного сглаживания для него. В Prognoz Platform это довольно просто сделать, потому что при обновлении значения параметра платформа сразу же перерисовывает график сглаженного ряда, и визуально можно сразу увидеть, насколько хорошо он описывает наш исходный ряд. Я остановился на следующих значениях:

Как я вычислил период, мы рассмотрим в следующей статье о временных рядах.

Обычно в качестве первых приближений можно рассматривать значения между 0,2 и 0,4. Prognoz Platform также использует модель с дополнительным параметром ɸ , который дэмпфирует тренд так, что он приближается к константе в будущем. Для ɸ я взял значение 1, что соответствует обычной модели.

Также я сделал прогноз значений ряда данным методом на последние 2 года. На рисунке ниже я пометил точку начала прогноза, проведя через неё черту. Как видно, исходный ряд и сглаженный весьма неплохо совпадают, в том числе и на периоде прогнозирования – неплохо для такого простого метода!

Prognoz Platform также позволяет автоматически подобрать оптимальные значения параметров, используя систематический поиск в пространстве значений параметров и минимизируя сумму квадратов отклонений сглаженного ряда от исходного.

Описанные методы весьма просты, их легко применять, и они являются хорошей отправной точкой для анализа структуры и прогнозирования временных рядов.

Еще больше о временных рядах читайте в следующей статье.

Введение

В данной главе рассматриваются задачи описания упорядоченных данных, полученных последовательно (во времени). Вообще говоря, упорядоченность может иметь место не только во времени, но и в пространстве, например, диаметр нити как функция её длины (одномерный случай), значение температуры воздуха как функция пространственных координат (трёхмерный случай).

В отличие от регрессионного анализа, где порядок строк в матрице наблюдений может быть произвольным, во временных рядах важна упорядоченность, а следовательно, интерес представляет взаимосвязь значений, относящихся к разным моментам времени.

Если значения ряда известны в отдельные моменты времени, то такой ряд называют дискретным , в отличие от непрерывного , значения которого известны в любой момент времени. Интервал между двумя последовательными моментами времени назовём тактом (шагом) . Здесь будут рассматриваться в основном дискретные временные ряды с фиксированной протяжённостью такта, принимаемой за единицу счёта. Заметим, что временные ряды экономических показателей, как правило, дискретны.

Значения ряда могут быть измеряемыми непосредственно (цена, доходность, температура), либо агрегированными (кумулятивными) , например, объём выпуска; расстояние, пройдённое грузоперевозчиками за временной такт.

Если значения ряда определяются детерминированной математической функцией, то ряд называют детерминированным . Если эти значения могут быть описаны лишь с привлечением вероятностных моделей, то временной ряд называют случайным .

Явление, протекающее во времени, называют процессом , поэтому можно говорить о детерминированном или случайном процессах. В последнем случае используют часто термин “стохастический процесс” . Анализируемый отрезок временного ряда может рассматриваться как частная реализация (выборка) изучаемого стохастического процесса, генерируемого скрытым вероятностным механизмом.

Временные ряды возникают во многих предметных областях и имеют различную природу. Для их изучения предложены различные методы, что делает теорию временных рядов весьма разветвленной дисциплиной. Так, в зависимости от вида временных рядов можно выделить такие разделы теории анализа временных рядов:

– стационарные случайные процессы, описывающие последовательности случайных величин, вероятностные свойства которых не изменяются во времени. Подобные процессы широко распространены в радиотехнике, метереологии, сейсмологии и т. д.

– диффузионные процессы, имеющие место при взаимопроникновении жидкостей и газов.

– точечные процессы, описывающие последовательности событий, таких как поступление заявок на обслуживание, стихийных и техногенных катастроф. Подобные процессы изучаются в теории массового обслуживания.

Мы ограничимся рассмотрением прикладных аспектов анализа временных рядов, которые полезны при решении практических задач в экономике, финансах. Основной упор будет сделан на методы подбора математической модели для описания временного ряда и прогнозирования его поведения.

1.Цели, методы и этапы анализа временных рядов

Практическое изучение временного ряда предполагает выявление свойств ряда и получение выводов о вероятностном механизме, порождающем этот ряд. Основные цели при изучении временного ряда следующие:

– описание характерных особенностей ряда в сжатой форме;

– построение модели временного ряда;

– предсказание будущих значений на основе прошлых наблюдений;

– управление процессом, порождающим временной ряд, путем выборки сигналов, предупреждающих о грядущих неблагоприятных событиях.

Достижение поставленных целей возможно далеко не всегда как из-за недостатка исходных данных (недостаточная длительность наблюдения), так из-за изменчивости со временем статистической структуры ряда.

Перечисленные цели диктуют в значительной мере, последовательность этапов анализа временных рядов:

1) графическое представление и описание поведения ряда;

2) выделение и исключение закономерных, неслучайных составляющих ряда, зависящих от времени;

3) исследование случайной составляющей временного ряда, оставшейся после удаления закономерной составляющей;

4) построение (подбор) математической модели для описания случайной составляющей и проверка ее адекватности;

5) прогнозирование будущих значений ряда.

При анализе временных рядов используются различные методы, наиболее распространенными из которых являются:

1) корреляционный анализ, используемый для выявления характерных особенностей ряда (периодичностей, тенденций и т. д.);

2) спектральный анализ, позволяющий находить периодические составляющие временного ряда;

3) методы сглаживания и фильтрации, предназначенные для преобразования временных рядов с целью удаления высокочастотных и сезонных колебаний;

5) методы прогнозирования.

2.Структурные компоненты временного ряда

Как уже отмечалось, в модели временного ряда принято выделять две основные составляющие: детерминированную и случайную (рис.). Под детерминированной составляющей временного ряда понимают числовую последовательность , элементы которой вычисляются по определенному правилу как функция времени t . Исключив детерминированную составляющую из данных, мы получим колеблющийся вокруг нуля ряд, который может в одном предельном случае представлять чисто случайные скачки, а в другом – плавное колебательное движение. В большинстве случаев будет нечто среднее: некоторая иррегулярность и определенный систематический эффект, обусловленный зависимостью последовательных членов ряда.

В свою очередь, детерминированная составляющая может содержать следующие структурные компоненты:

1) тренд g, представляющий собой плавное изменение процесса во времени и обусловленный действием долговременных факторов. В качестве примера таких факторов в экономике можно назвать: а) изменение демографических характеристик популяции (численности, возрастной структуры); б) технологическое и экономическое развитие; в) рост потребления.

2) сезонный эффект s , связанный с наличием факторов, действующих циклически с заранее известной периодичностью. Ряд в этом случае имеет иерархическую шкалу времени (например, внутри года есть сезоны, связанные с временами года, кварталы, месяцы) и в одноименных точках ряда имеют место сходные эффекты.


Рис. Структурные компоненты временного ряда.

Типичные примеры сезонного эффекта: изменение загруженности автотрассы в течение суток, по дням недели, временам года, пик продаж товаров для школьников в конце августа - начале сентября. Сезонная компонента со временем может меняться, либо носить плавающий характер. Так на графике объема перевозок авиалайнерами (см рис.) видно, что локальные пики, приходящиеся на праздник Пасхи «плавают» из-за изменчивости ее сроков.

Циклическая компонента c , описывающая длительные периоды относительного подъема и спада и состоящая из циклов переменной длительности и амплитуды. Подобная компонента весьма характерна для рядов макроэкономических показателей. Циклические изменения обусловлены здесь взаимодействием спроса и предложения, а также наложением таких факторов, как истощение ресурсов, погодные условия, изменения в налоговой политике и т. п. Отметим, что циклическую компоненту крайне трудно идентифицировать формальными методами, исходя только из данных изучаемого ряда.

«Взрывная» компонента i , иначе интервенция, под которой понимают существенное кратковременное воздействие на временной ряд. Примером интервенции могут служить события «черного вторника» 1994г., когда курс доллара за день вырос на несколько десятков процентов.

Случайная составляющая ряда отражает воздействие многочисленных факторов случайного характера и может иметь разнообразную структуру, начиная от простейшей в виде «белого шума» до весьма сложных, описываемых моделями авторегрессии-скользящего среднего (подробнее дальше).

После выделения структурных компонент необходимо специфицировать форму их вхождения во временной ряд. На верхнем уровне представления с выделением лишь детерминированной и случайной составляющих обычно используют аддитивную либо мультипликативную модели.

Аддитивная модель имеет вид

мультипликативная –

где - значение ряда в момент t ;

Значение детерминированной составляющей;

Значение случайной составляющей.

В свою очередь, детерминированная составляющая может быть представлена как аддитивная комбинация детерминированных компонент:

как мультипликативная комбинация:


,

либо как смешанная комбинация, например,

3.Модели компонентов детерминированной составляющей временного ряда

3.1.Модели тренда

Тренд отражает действие постоянных долговременных факторов и носит плавный характер, так что для описания тренда широко используют полиномиальные модели, линейные по параметрам

где значения степени k полинома редко превышает 5.

Наряду с полиномиальными моделями экономические данные, описывающие процессы роста, часто аппроксимируются следующими моделями:

– экспоненциальной

Эта модель описывает процесс с постоянным темпом прироста, то есть

– логистической

У процесса, описываемого логистической кривой, темп прироста изучаемой характеристики линейно падает с увеличением y , то есть

– Гомперца

.

Эта модель описывает процесс, в котором темп прироста исследуемой характеристики пропорционален ее логарифму

.

Две последние модели задают кривые тренда S -образной формы, представляя процессы с нарастающим темпом роста в начальной стадии с постепенным замедлением в конце.

При подборе подходящей функциональной зависимости, иначе спецификации тренда, весьма полезным является графическое представление временного ряда.

Отметим также, что тренд, отражая действие долговременных факторов, является определяющим при построении долговременных прогнозов.

3.2 Модели сезонной компоненты

Сезонный эффект во временном ряде проявляется на «фоне» тренда и его выделение оказывается возможным после предварительной оценки тренда. (Здесь не рассматриваются методы спектрального анализа, позволяющего выделить вклад сезонной компоненты в спектр без вычисления других компонент ряда). Действительно, линейно растущий ряд помесячных данных будет иметь схожие эффекты в одноименных точках – наименьшее значение в январе и наибольшее в декабре; однако вряд ли здесь уместно говорить о сезонном эффекте: исключив линейный тренд, мы получим ряд, в котором сезонность полностью отсутствует. В то же время ряд, описывающий помесячные объемы продаж новогодних открыток, хотя и будет иметь такую же особенность (минимум продаж в январе и максимум в декабре) будет носить скорее всего колебательный характер относительно тренда, что позволяет специфицировать эти колебания как сезонный эффект.

В простейшем случае сезонный эффект может проявляться в виде строго периодической зависимости.

Для любого t , где t - период сезонности.

В общем случае значения, отстоящие на t могут быть связаны функциональной зависимостью, то есть

К примеру, сезонный эффект сам может содержать трендовую составляющую, отражающую изменение амплитуды колебаний.

Если сезонный эффект входит в ряд аддитивно, то модель сезонного эффекта можно записать как


где - булевы, иначе индикаторные, переменные, по одной на каждый такт внутри периода t сезонности. Так, для ряда месячных данных =0 для всех t , кроме января каждого года, для которого =1 и так далее. Коэффициент при показывает отклонение январских значений от тренда, - отклонение февральских значений и так далее до . Чтобы снять неоднозначность в значениях коэффициентов сезонности , вводят дополнительное ограничение, так называемое условие репараметризации, обычно

В том случае, когда сезонный эффект носит мультипликативный характер, то есть

модель ряда с использованием индикаторных переменных можно записать в виде

Коэффициенты , в этой модели принято называть сезонными индексами.

Для полностью мультипликативного ряда


обычно проводят процедуру линеаризации операцией логарифмирования

Условимся называть представленные модели сезонного эффекта «индикаторными». Если сезонный эффект достаточно «гладкий» – близок к гармонике, используют «гармоническое» представление

,

где d - амплитуда, w - условия частоты (в радианах в единицу времени), a - фаза волны. Поскольку фаза обычно заранее неизвестна. Последнее выражение записывают как

Параметры А и В можно оценить с помощью обычно регрессии. Угловая частота w считается известной. Если качество подгонки окажется неудовлетворительным, наряду с гармоникой w основной волны в модель включают дополнительно первую гармонику (с удвоенной основной частотой 2w ), при необходимости и вторую и так далее гармоники. В принципе, из двух представлений: индикаторного и гармоничного – следует выбирать то, которое потребует меньшего числа параметров.

3.3 Модель интервенции

Интервенция, представляющая собой воздействие, существенно превышающее флуктуации ряда, может носить характер «импульса» или «ступеньки».

Импульсное воздействие кратковременно: начавшись, оно почти тут же заканчивается. Ступенчатое воздействие длительно, носит устойчивый характер. Обобщенная модель интервенции имеет вид

где - значение детерминированной компоненты ряда, описываемой как интервенция;

Коэффициенты типа скользящего среднего;

Экзогенная переменная одного из двух типов;

(«ступень»), или («импульс»)

где -- фиксированный момент времени, называемый моментом интервенции.

4.Методы выделения тренда

Приведенные в п.3.1 спецификации ряда являются параметрическими функциями времени. Оценивание параметров может быть проведено по методу наименьших квадратов так же, как в регрессионном анализе. Хотя статистические предпосылки регрессионного анализа (см п.) во временных рядах часто не выполняются (особенно п.5 – некоррелированность возмущений), тем не менее оценки тренда оказываются приемлемыми, если модель специфицирована правильно и среди наблюдений нет больших выбросов. Нарушение предпосылок регрессионного анализа сказывается не столько на оценках коэффициентов, сколько на их статистических свойствах, в частности, искажаются оценки дисперсии случайной составляющей и доверительные интервалы для коэффициентов модели.

В литературе описываются методы оценивания в условиях коррелированности возмущений, однако их применение требует дополнительной информации о корреляции наблюдений.

Главная проблема при выделении тренда состоит в том, что подобрать единую спецификацию для всего временного часто невозможно, поскольку меняются условия протекания процесса. Учет этой изменчивости особенно важен, если тренд вычисляется для целей прогнозирования. Здесь сказывается особенность именно временных рядов: данные относящиеся к «далекому прошлому» будут неактуальными, бесполезными или даже «вредными» для оценивания параметров модели текущего периода. Вот почему при анализе временных рядов широко используются процедуры взвешивания данных.

Для учета изменчивости условий модель ряда часто наделяют свойством адаптивности, по крайней мере, на уровне оценок параметров. Адаптивность понимается в том смысле, что оценки параметров легко пересчитываются по мере поступления новых наблюдений. Конечно, и обычному методу наименьших квадратов можно придать черты адаптивности, пересчитывая оценки каждый раз, вовлекая в процесс вычислений старые данные плюс свежие наблюдения. Однако при этом каждый новый пересчет ведет к изменению прошлых оценок, тогда как адаптивные алгоритмы свободны от этого недостатка.

4.1 Скользящие средние

Метод скользящих средних – один из самых старых и широко известных способов выделения детерминированной составляющей временного ряда. Суть метода состоит в усреднении исходного ряда на интервале времени, длина которого выбрана заранее. При этом сам выбранный интервал скользит вдоль ряда, сдвигаясь каждый раз на один такт вправо (отсюда название метода). За счет усреднения удается существенно уменьшить дисперсию случайной составляющей.

Ряд новых значений становится более гладким, вот почему подобную процедуру называют сглаживанием временного ряда.

Процедуру сглаживания рассмотрим вначале для ряда, содержащего лишь трендовую составляющую, на которую аддитивно наложен случайных компонент.

Как известно, гладкая функция может быть локально представлена в виде полинома с довольно высокой степенью точности. Отложим от начала временного ряда интервал времени длиной (2m +1) точек и построим полином степени m для отобранных значений и используем этот полином для определения значения тренда в (m +1 )-й, средней, точке группы.

Построим для определенности полином 3-го порядка для интервала из семи наблюдений. Для удобства дальнейших преобразований занумеруем моменты времени внутри выбранного интервала так, чтобы его середина имела нулевое значение, т.е. t = -3, -2, -1, 0, 1, 2, 3. Запишем искомый полином:


Константы находим методом наименьших квадратов:

Дифференцируем по коэффициентам :

;

Суммы нечетных порядков t от -3 до +3 равны 0, и уравнения сводятся к виду:


Используя первое и третье из уравнений, получаем при t=0:

Следовательно, значение тренда в точке t = 0 равно средневзвешенному значению семи точек с данной точкой в качестве центральной и весами

, которые в силу симметрии можно записать короче:

.

Для того чтобы вычислить значение тренда в следующей, (m+2)-й точке исходного ряда (в нашем случае пятой), следует воспользоваться формулой (1), где значения наблюдений берутся из интервала, сдвинутого на такт вправо, и т.д. до точки N - m .

количество точек формула

9 .

Свойства скользящих средних:

1) сумма весов равна единице (т.к. сглаживание ряда, все члены которого равны одной и той же константе, должно приводить к той же константе);

2) веса симметричны относительно серединного значения;

3) формулы не позволяют вычислить значения тренда для первых и последних m значений ряда;

4) можно вывести формулы для построения трендов на четном числе точек, однако при этом были бы получены значения трендов в серединах временных тактов. Значение тренда в точках наблюдений можно определить в этом случая как полусумма двух соседних значений тренда.

Следует отметить, что при четном числе 2m тактовв интервале усреднения (двадцать четыре часа в сутки, четыре недели в месяце, двенадцать месяцев в году), широко практикуется простое усреднение с весами . Пусть имеются, например, наблюдения на последний день каждого месяца с января по декабрь. Простое усреднение 12 точек с весами дает значение тренда в середине июля. Чтобы получить значение тренда на конец июля надо взять среднее значение тренда в середине июля и середине августа. Оказывается, это эквивалентно усреднению 13-месячных данных, но значения на краях интервала берут с весами . Итак, если интервал сглаживания содержит четное число 2m точек, в усреднении задействуют не 2m , а 2m +1 значений ряда:

Скользящие средние, сглаживая исходный ряд, оставляют в нем трендовую и циклическую составляющие. Выбор величины интервала сглаживания должен делаться из содержательных соображений. Если ряд содержит сезонный компонент, то величина интервала сглаживания выбирается равной или кратной периоду сезонности. В отсутствии сезонности интервал сглаживания берется обычно в диапазоне три-семь

Эффект Слуцкого-Юла

Рассмотрим, как влияет процесс сглаживания на случайную составляющую ряда, относительно которой будем полагать, что она центрирована и соседние члены ряда некоррелированы.

Скользящее среднее случайного ряда x есть:

.

В силу центрированности x и отсутствия корреляций между членами исходного ряда имеем:

И .

Из полученных соотношений видно, что усреднение приводит к уменьшению дисперсии колебаний. Кроме того члены ряда, полученные в результате усреднения, не являются теперь независимыми. Производный, сглаженный, ряд имеет ненулевые автокорреляции (корреляции между членами ряда, разделенных k-1 наблюдениями) вплоть до порядка 2m. Таким образом производный ряд будет более гладким, чем исходный случайный ряд, и в нем могут проявляться систематические колебания. Этот эффект называется эффектом Слуцкого-Юла.

4.2 Определение порядка полинома методом последовательных разностей

Если имеется ряд, содержащий полином (или локально представляемый полиномом) с наложенным на него случайным элементом, то было бы естественно исследовать, нельзя ли исключить полиномиальную часть вычислением последовательных разностей ряда. Действительно, разности полинома порядка k представляют собой полином порядка k-1. Далее, если ряд содержит полином порядка p , то переход к разностям, повторенный (p+1) раз, исключает его и оставляет элементы, связанные со случайной компонентой исходного ряда.

Рассмотрим, к примеру, переход к разностям в ряде, содержащим полином третьего порядка.

0 1 8 27 64 125

6 12 18 24

6 6 6

0 0

Взятие разностей преобразует случайную составляющую ряда.

В общем случае получаем:

;

.

Из последнего соотношения получаем

Следовательно, метод последовательных разностей переменной состоит в вычислении первых, вторых, третьих и т.д. разностей, определении сумм квадратов, делении на и т.д. и обнаружения момента, когда это отношение становится постоянным. Таким образом мы получаем оценки порядка полинома, содержащегося в исходном ряде, и дисперсии случайного компонента.

4.3.Методы экспоненциального сглаживания

Методы построения функций для описания наблюдений до сих пор основывался на критерии наименьших квадратов, в соответствии с которым все наблюдения имеют равный вес. Однако, можно предположить, что недавним точкам следует придавать в некотором смысле больший вес, а наблюдения, относящиеся к далекому прошлому, должны иметь по сравнению с ними меньшую ценность. До некоторой степени мы учитывали это в скользящих средних с конечной длиной отрезка усреднения, где значения весов, приписываемых группе из 2m+1 значений, не зависят от предшествующих значений. Теперь обратимся к другому методу выделения более «свежих» наблюдений.

Рассмотрим ряд весов, пропорциональных множителю b, а именно и т.д. Так как сумма весов должна равняться единице, т.е. , весами фактически будут и т.д. (предполагается, что 0

4.3.1 Простое экспоненциальное сглаживание

Рассмотрим простейший ряд , равный сумме постоянной (уровень) и случайной компоненты :

.

В приведенном выражении расхождения между наблюденными значениями ряда и оценкой уровня берутся с экспоненциально убывающими весами в зависимости от возраста данных.

; ; .

Полученную оценку на момент t обозначим (t ). Сглаженное значение в момент t можно выразить через сглаженное значение в прошлый момент t -1 и новое наблюдение :

Полученное соотношение

Перепишем несколько иначе, введя так называемую постоянную сглаживания (0 £a £1).

Из полученного соотношения видно, что новое сглаженное значение получается из предыдущего коррекцией последнего на долю ошибки, рассогласования, между новым и прогнозным значениями ряда. Происходит своего рода адаптация уровня ряда к новым данным.

4.3.2 Экспоненциальное сглаживание высоких порядков

Обобщим метод экспоненциального сглаживания на случай, когда модель процесса определяется линейной функцией . Как и прежде, при заданном b минимизируем:

.

(Здесь для удобства представления знаки ~ и Ù опущены).

,

С учетом того что

, ,

получаем

Запишем: .

Эту операцию можно рассматривать как сглаживание 1-го порядка. По аналогии построим сглаживание 2-го порядка:

; .

Рассмотренную выше процедуру можно обобщить на случай полиномиальных трендов более высокого порядка n , при этом алгебраические выражения будут сложнее. Например, если модель описывается параболой, то используется метод тройного экспоненциального сглаживания.

5. Оценивание и исключение сезонной компоненты

Сезонные компоненты могут представлять самостоятельный интерес либо выступать в роли мешающего фактора. В первом случае необходимо уметь выделять их из ряда и оценивать параметры соответствующей модели. Что же касается удаления сезонной компоненты из ряда, то здесь возможны несколько способов.

Рассмотрим сначала процедуру оценивания сезонных эффектов. Пусть исходный ряд является полностью аддитивным, то есть

.

Необходимо оценить по наблюденным . Иными словами, необходимо получить оценки коэффициентов индикаторной модели.

Как уже отмечалось, сезонный эффект проявляется на фоне тренда, поэтому вначале необходимо оценить трендовую составляющую одним из рассмотренных методов. Затем для каждого сезона вычисляют все относящиеся к нему разности

где, как обычно, - наблюденное значение ряда, - оцененное значение тренда.

Каждая из этих разностей дает совместную оценку сезонного эффекта и случайного компонента, отличного, правда, от исходного в силу взятия разностей.

Производя усреднение полученных разностей, получают оценки эффектов. Полагая, что исходный ряд содержит целое число k периодов сезонности и ограничиваясь простым средним, имеем

С учетом условия репараметризации, требующим, чтобы сумма сезонных эффектов равнялась нулю, получаем скорректированные оценки

.

В случае мультипликативного сезонного эффекта, когда модель ряда имеет вид

,

вычисляют уже не разности, а отношения

.

В качестве оценки сезонного индекса выступает среднее

.

На практике считается, что для оценки сезонных эффектов временной ряд должен содержать не менее пяти-шести периодов сезонности.

Перейдем теперь к способам удаления сезонного эффекта из ряда. Таких способов два. Первый из них назовем «послетрендовый». Он является логическим следствием рассмотренной выше процедуры оценивания. Для аддитивной модели удаление сезонной компоненты сводится к вычитанию оцененной сезонной компоненты из исходного ряда. Для мультипликативной модели значения ряда делят на соответствующие сезонные индексы.

Второй способ не требует предварительной оценки ни трендовой, ни сезонной компонент, а основывается на использовании разностных операторов.

Разностные операторы.

При исследовании временных рядов часто имеется возможность представить детерминированные функции времени простыми рекуррентными уравнениями. К примеру, линейный тренд

можно записать как

Последнее соотношение получается из (1) сравнением двух значений ряда для соседних моментов t -1 и t . Учитывая, что соотношение (2) справедливо и для моментов t -2 и t - 1, так что , модель (1) можно записать и в виде


Модель (3) не содержит явно параметров, описывающих тренд. Более компактно описанные преобразования можно описать, используя операторы взятия разности назад

Модели (2) и (3) можно записать как

Выходит, разность второго порядка полностью исключает из исходного ряда линейный тренд. Легко видеть, что разность порядка d исключает из ряда полиномиальный тренд порядка d -1. Пусть теперь ряд содержит сезонный эффект с периодом t , так что

Процедура перехода от ряда (t = 1,2,...,T ) к ряду называется взятием первой сезонной разности, а оператор сезонным разностным оператором с периодом t . Из (4) следует, что

Выходит, взятие сезонной разности исключает из временного ряда любую детерминированную сезонную компоненту.

Иногда оказываются полезными сезонные операторы более высоких порядков. Так, сезонный оператор второго порядка с периодом t есть

Если ряд содержит и тренд, и сезонную составляющую, их можно исключить, последовательно применяя операторы и .

Легко показать, что порядок применения этих операторов не существенен:

Отметим также, что детерминированный тренд, состоящий из тренда и сезонной компоненты, после применения операторов и полностью вырождается, то есть . Однако записав последнее уравнение в рекуррентной форме, получаем

Из последнее соотношения видно, каким образом ряд можно неограниченно продолжать, имея вначале по крайней мере t +1 последовательных значения.

6. Модели случайной составляющей временного ряда

линейный ряд временной система

Для удобства изложения условимся обозначать здесь случайные величины так, как это принято в математической статистике – строчными буквами.

Случайным процессом X ( t ) на множестве Т называют функцию, значения которой случайны при каждом t ÎT. Если элементы Т счетные (дискретное время), то случайный процесс часто называют случайной последовательностью.

Полное математическое описание случайного процесса предполагает задание системы функций распределения:

– для каждого t ÎT, (1)

– для каждой пары элементов

и вообще для любого конечного числа элементов

Функции (1),(2),(3) называют конечномерными распределениями случайного процесса.

Построить такую систему функции для произвольного случайного процесса практически невозможно. Обычно случайные процессы задают с помощью априорных предположений о его свойствах, таких как независимость приращений, марковский характер траекторий и т. п.

Процесс, у которого все конечномерные распределения нормальны, называется нормальным (гауссовским). Оказывается, что для полного описания такого процесса достаточно знания одно- и двумерного распределений (1), (2), что важно с практической точки зрения, поскольку позволяет ограничиться исследованием математического ожидания и корреляционной функцией процесса.

В теории временных рядов используются ряд моделей случайной составляющей, начиная от простейшей – «белого шума», до весьма сложных типа авторегрессии – скользящего среднего и других, которые строятся на базе белого шума.

Прежде чем определять процесс белого шума рассмотрим последовательность независимых случайных величин, для которой функция распределения есть

Из последнего соотношения следует, что все конечномерные распределения последовательности определяются с помощью одномерных распределений.

Если к тому же в такой последовательности составляющие ее случайные величины X (t ) имеют нулевое математическое ожидание и распределены одинаково при всех t ÎT, то это – «белый шум». В случая нормальности распределения X (t ) говорят о гауссовском белом шуме. Итак, гауссовский белый шум – последовательность независимых нормально распределенных случайных величин с нулевым математическим ожиданием и одинаковой (общей) дисперсией.

Более сложными моделями, широко используемыми в теории и практике анализа временных рядов, являются линейные модели: процессы скользящего среднего, авторегрессии и смешанные.

Процесс скользящего среднего порядка q представляет собой взвешенную сумму случайных возмущений:

где – независимые одинаково распределенные случайные величины (белый шум);

– числовые коэффициенты.

Легко видеть из определения, что у процесса скользящего среднего порядка q (сокращенно CC(q )) статистически зависимыми являются (q +1) подряд идущих величин X (t ), X (t -1),..., X (t - q ). Члены ряда, отстоящие друг от друга больше чем на (q +1) такт, статистически независимы, поскольку в их формировании участвуют разные слагаемые .

где – случайное возмущение, действующее в текущий момент t ;

– числовые коэффициенты.

Выражая последовательно в соответствии с соотношением (5) X (t-1) через X (t-2), . . . , X (t-p-1), затем X (t-2) через X (t-3), . . . , X (t-p-2) и т.д. получим, что X (t) есть бесконечная сумма прошлых возмущений Из этого следует, члены процесса авторегрессии X(t) и X (t-k) статистически зависимы при любомk .

Процесс АР(1) часто называют процессом Маркова, АР(2) – процессом Юла. В общем случае марковским называют такой процесс, будущее которого определяется только его состоянием в настоящем и воздействиями на процесс, которые будут оказываться в будущем, тогда как его состояние до настоящего момента при этом несущественно. Процесс АР(1)

является марковским, поскольку его состояние в любой момент определяется через значения процесса , если известна величина в момент . Формально процесс авторегресси произвольного порядка также можно считать марковским, если его состоянием в момент t считать набор

(X (t),X (t-1), . . . , X (t-p-1)) .

Более полно модели СС, АР, а также их композиция: модели авторегрессии – скользящего среднего рассматриваются далее (п.10.1.5). Заметим только, что все они представляются частными случаями общей линейной модели

где – весовые коэффициенты, число которых, вообще-то говоря, бесконечно.

Среди моделей случайной составляющей выделим важный класс – стационарные процессы, такие, свойства которых не меняются во времени. Случайный процесс Y(t) называется стационарным, если для любых n , распределения случайных величин и одинаковы. Иными словами, функции конечномерных распределений не меняются при сдвиге времени:


Образующие стационарную последовательность случайные величины распределены одинаково, так что определенный выше процесс белого шума является стационарным.

7.Числовые характеристики случайной составляющей

При анализе временных рядов используются числовые характеристики, аналогичные характеристикам случайных величин:

– математическое ожидание (среднее значение процесса)

;

– автоковариационная функция

– дисперсия

– стандартное отклонение

– автокорреляционная функция

– частная автокорреляционная функция

Заметим, что в операторе функции усреднение происходит при неизменном t , то есть имеется математическое ожидание по множеству реализаций (вообще-то говоря, потенциальных поскольку «в реку времени нельзя войти дважды»).

Рассмотрим введенные числовые характеристики для стационарных процессов. Из определения стационарности следует, что для любых s , t и

положив = - t , получаем

(1)

Выходит, у стационарного процесса математическое ожидание и дисперсия одинаковы при любом t , а автоковариационная и автокорреляционная функции зависят не от момента времени s илиt , а лишь от их разности (лага).

Отметим, что выполнение свойств (1) еще не влечет стационарности в смысле определения из п.6. Тем не менее постоянство первых двух моментов, а также зависимость автокорреляционной функции только от лага определенно отражает некоторую неизменность процесса во времени. Если выполнены условия (1), то говорят о стационарности процесса в широком смысле, тогда как выполнение условий () означает стационарность в узком (строгом) смысле.

Данное выше определение белого шума надо трактовать в узком смысле. На практике часто ограничиваются белым шумом в широком смысле, под которым понимают временной ряд (случайный процесс), у которого =0 и

Отметим, что гаусовский процесс, стационарный в узком смысле, стационарен и в широком смысле.

О стационарности в широком смысле судить гораздо проще. Для этого используют различные статистические критерии, базирующиеся на одной реализации случайного процесса.

8.Оценивание числовых характеристик временного ряда

Оценивание числовых характеристик случайного временного ряда в каждый момент времени требует набора реализаций (траекторий) соответствующего случайного процесса. Хотя время и не воспроизводимо, однако условия протекания процесса иногда можно считать повторяющимися. Особенно это характерно для технических приложений, например, колебания напряжения в электрической сети в течении суток. Временные ряды, наблюдаемые в разные сутки, можно считать независимыми реализациями одного случайного процесса.

Иная ситуация при исследовании процессов социально-экономической природы. Как правило, здесь доступна единственная реализация процесса, повторить которую не представляется возможным. Следовательно, получить оценки среднего, дисперсии, ковариации нельзя. Однако для стационарных процессов подобные оценки все-таки возможны. Пусть наблюденные значения временного ряда в моменты соответственно. Традиционная оценка среднего может служить оценкой математического ожидания стационарного (в широком смысле) случайного процесса.

Ясно, что такая оценка для стационарного ряда будет несмещенной. Состоятельность этой оценки устанавливается теоремой Слуцкого, которая в качестве необходимого и достаточного условия требует чтобы

,

где – автокорреляционная функция процесса.

Точность оценивания среднего зависит от длины N ряда. Считается, что длина N всегда должна быть не меньше так называемого времени корреляции, под которым понимают величину

Величина Т дает представление о порядке величины промежутка времени , на котором сохраняется заметная корреляция между двумя значениями ряда.

Рассмотрим теперь получение оценок значений автокорреляционной функции. Как и прежде, – наблюденные значения временного ряда. Образуем (N -1) пар . Эти пары можно рассматривать как выборку двух случайных величин, для которых можно определить оценку стандартного коэффициента корреляции . Затем составим (N -2) пар и определим оценку и т.д. Поскольку при подсчете очередного объем выборки меняется, меняется значение среднего и стандартного отклонения для соответствующего набора значений. Для упрощения принято измерять все переменные относительно среднего значения всего ряда и заменять дисперсионные члены в знаменателе на дисперсию ряда в целом, то есть

,

где - среднее, равное .

При больших N расхождение в оценках незначительные. На практике k берут не выше N /4.

Если ряд рассматривается как генеральная совокупность бесконечной длины, то говорят об автокорреляциях (теоретических) и обозначают их . Массив коэффициентов или соответствующих им выборочных коэффициентов содержат весьма ценную информацию о внутренней структуре ряда. Совокупность коэффициентов корреляции, нанесенная на график с координатами k (лаг) по оси абсцисс и либо по оси ординат, называют коррелограммой (теоретической или выборочной соответственно).

Точностные характеристики оценки получены для гауссовских процессов. В частности, для гаусовского белого шума, у которого все корреляции равны нулю, . Математическое ожидание для гауссовского белого шума оказывается не равным нулю, а именно, , то есть оценка оказывается смещенной. Величина смещения убывает с ростом объема выборки и не столь существенна в прикладном анализе.

Оценка асимптотически нормальна при , что дает основание для построения приблизительного доверительного интервала. Широко применяемый 95%-интервал есть .

Границы доверительного интервала, нанесенные на график, называют доверительной трубкой. Если коррелограмма некоторого случайного процесса не выходит за пределы доверительной трубки, то этот процесс близок к белому шуму. Правда, это условие можно считать лишь достаточным. Нередко выборочная коррелограмма гауссовского белого шума содержит один, а то и два выброса среди первых 20 оценок , что естественно затрудняет интерпретацию подобной коррелограммы.

Наряду с автокорреляционной функцией при анализе структуры случайного временного ряда используется частная автокорреляционная функция, значения которой суть частные коэффициенты корреляции.

9. Свободные от закона распределения критерии проверки ряда на случайность

Простейшей гипотезой, которую можно выдвинуть относительно колеблющегося ряда, не имеющего явно выраженного тренда, является предположение, что колебания случайны. В случайных рядах, согласно гипотезе, наблюдения независимы и могут следовать в любом порядке. Для проверки на случайность желательно использовать критерий, не требующий каких-либо ограничений на вид распределения совокупности, из которой, по предположению, извлекаются наблюдаемые значения.

1. Критерий поворотных точек состоит в подсчёте пиков (величин, которые больше двух соседних) и впадин (величин, которые меньше двух соседних). Рассмотрим ряд y 1 ,...,y N .

пик впадина

y t-1 < y t > y t+1 y t-1 > y t < y t+1


y t-1 y t y t+1 y t-1 y t y t+1

Рис. Поворотные точки.

Для определения поворотной точки требуются три последовательных значения. Начальное и конечное значения не могут быть поворотными точками, т. к. неизвестно y 0 и y N+1 . Если ряд случаен, то эти три значения могут следовать в любом из шести возможных порядков с равной вероятностью. Только в четырёх из них будет поворотная точка, а именно, когда наибольшее или наименьшее из трёх значений находится в середине. Следовательно, вероятность обнаружения поворотной точки в любой группе из трёх значений равна 2/3.


Рис. Варианты взаимного расположения трёх точек.

Для группы из N величин определим счётную переменную Х.

ì 1, если y t-1 < y t > y t+1 или y t-1 > y t < y t+1

î 0, в противном случае.

Тогда число поворотных точек р в ряде есть просто , а их математическое ожидание есть М[p]=2/3(N-2). Дисперсия числа поворотных точек вычисляется по формуле D[p]=(16N-29)/90, а само распределение близко к нормальному.

2. Критерий, основанный на определении длины фазы

Интервал между двумя поворотными точками называется фазой. Для того, чтобы установить наличие фазы длины d (например, восходящей) , нужно обнаружить d+3 членов, содержащих падение от первого члена ко второму,затем последовательный подъем до (d+2)-го члена и падение к (d+3)-ему члену.


1 2 3 4 d+1 d+2 d+3 N

рис. 3. Фаза длины d.

Рассмотрим группу из d+3 чисел, расположенных в порядке возрастания. Если, не трогая двух крайних членов, извлечь пару чисел из оставшихся d+1 и одно из них поставить в начало, а другое в конец, получим фазу длины d. Существует способов такого выбора пары чисел и каждый член пары может быть поставлен в любой конец, следовательно число восходящих фаз равно d(d+1).

Кроме того, поворотные точки будут иметь место, если первый член последовательности поставить в конец, а любой из оставшихся, за исключением второго, поместить в начало. Число таких последовательностей составит ( d +1) . Еще столько же последовательностей получиться если последний член в исходной, возрастающей, последовательности поставить в начало, а любой другой, кроме последнего, в конец. Во избежании двойного счета следует исключить случай, когда первый член ставится на последнее место, а последний на первое. Таким образом, в последовательности из ( d +3) чисел с фазой длиной d число случаев роста составит

d (d +1)+2(d +1)-1 =+3d +1 .

Число возможных последовательностей из ( d +3) чисел равняется числу перестановок ( d +3) !, так что вероятность либо восходящей, либо нисходящей фазы равна

В ряде длины N последовательно можно выделить N-2-d групп по d+3 членов. Т.о. математическое ожидание числа фаз длины d

.

Можно показать, что математическое ожидание общего числа фаз длины от 1 до N-3

.

3 .Критерий, основанный на знаках разностей

Данный критерий состоит в подсчете числа положительных разностей первого порядка в ряде, иначе говоря, числа точек возрастания ряда. Для ряда из N членов получаем N-1 разностей. Определим счетную переменную как

Если теперь обозначить через с число точек возрастания случайного ряда, то

.

Распределение довольно быстро стремится к нормальному с дисперсией

.

В основном данный критерий рекомендуется для проверки наличия линейного тренда. С другой стороны, критерий, основанный на поворотных точках, плохо подходит для обнаружения тренда, т.к. наложение заметных случайных колебаний на умеренный тренд приводит примерно к тому же множеству поворотных точек, что и при отсутствии тренда. .Более совершенным, но более сложным критерием для обнаружения линейного тренда являются регрессия y на t и проверка значимости регрессионного коэффициента.

4.Критерий, основанный на ранговых сравнениях

Идею сравнения соседних значений ряда можно развить до сравнения всех значений. Для данного ряда подсчитаем число случаев, когда очередной член ряда превышает все последующие. Всего для сравнения имеется N(N-1) пар. Пусть n общее число случаев превышения. Подсчитывают ранговый коэффициент корреляции Кендэла

.

Если этот коэффициент значим и положителен, то ряд возрастающий, если отрицателен, то - убывающий.

10.Теоретический анализ стационарной случайной составляющей линейного вида

Рассматривается общая линейная модель стохастического процесса

где – белый шум

– весовые коэффициенты.

Напомним, что=0, ,

Введем оператор сдвига на один шаг назад В :

Многократное (для определенности j -кратное) применения оператора В , обозначаем как , дает С учетом введенных обозначений общую линейную модель можно записать как

где – линейный оператор.

Найдем математическое ожидание, дисперсию и автоковариационную функцию для процесса (1):

;

Для того чтобы модель имела смысл, дисперсия должна быть конечной, то есть предполагается, что ряд сходится.

Кроме этого предполагают, что имеет место так называемое условие обратимости:

,

где вместо В фигурируют комплексные числа. Из этого условия вытекает существование обратного оператора

где , то есть такого, что

Раскрывая произведение в последнем выражении, группируя однородные по члены и приравнивая их к нулю, получают выражения для определения коэффициентов . Так, и так далее.

Умножая () на слева, получим, что обратимый процесс может быть записан в виде

Запись (2) соответствует авторегрессионой схеме бесконечного порядка. Это же соотношение можно трактовать как линейный предиктор для по всем прошлым значениям временного ряда, а слагаемое – как случайную ошибку этого предиктора. Если известны все прошлые значения ряда, то по форме (2) можно спрогнозировать будущее значение ряда.

10.1\. Модели авторегрессии

Рассмотрим более подробно модели случайной составляющей, являющиеся частными случаями общей линейной модели, а именно модели авторегрессии, скользящего среднего и смешанные, широко применяемые на практике.

Модель АР(1) имеет вид

В модель примет вид

Рассматривая как сумму бесконечно убывающей геометрической прогрессии со знаменателем а В получаем, что

Таким образом, марковский процесс есть частный случай общей линейной модели, коэффициенты которой меняются по закону геометрической прогрессии, то есть .

Выражение (2) можно получить и из (1) непосредственно, выражая через , через и т.д.

Дисперсия в соответствие с () есть

Выходит, белый шум с дисперсией порождает в схеме Маркова случайный процесс с возросшей дисперсией, равной .

Для нахождения автоковариационной функции Марковского процесса можно воспользоваться общим выражением (). Однако более нагляден следующий путь. Домножим уравнение (1) марковского процесса на и возьмем математическое ожидание

Поскольку второе слагаемое в правой части равно нулю в силу некоррелированности возмущения в текущий момент с прошлыми значениями ряда , получаем

( в силу стационарности )

Из последнего соотношения имеем

,

то есть а совпадает с коэффициентом автокорреляции средних членов ряда. Умножим теперь (1) на и возьмем математическое ожидание:

Заменяя а на и деля на , получаем

Придавая k значения 2,3,… получим

Итак, в марковском процессе все автокорреляции можно выразить через первую автокорреляцию. Поскольку , автокорреляционная функция марковского процесса экспоненциально убывает при росте k .

Рассмотрим теперь частную автокорреляционную функцию марковского процесса. Мы получили, что корреляция между двумя членами ряда, отстоящими на два такта, то есть между и выражается величиной . Но зависит от , а от . Возникает вопрос, сохранится ли зависимость между и , если зависимость от срединного члена устранена. Соответствующий частный коэффициент корреляции есть

.

Поскольку , числитель равен нулю. Аналогично можно показать, что частные коэффициенты корреляции для членов ряда, отстоящих на 3,4 и так далее тактов, также равны нулю. Таким образом, автокорреляция существует только благодаря корреляции соседних членов, что впрочем следует из математической модели марковского процесса.

Завершая рассмотрение модели АР(1), отметим, что она весьма часто используется в экономико-математических исследованиях для описания остатков линейной регрессии, связывающей экономические показатели.

С использованием оператора сдвига В модель запишется как

,

Свойства модели зависят от корней и полинома

который можно записать также в виде

(1-В )(1-В )=0.

Для стационарности процесса (1) необходимо, чтобы корни и лежали внутри единичной окружности (случай комплексных корней), либо были меньше единицы (случай действительных корней), что обеспечивается при .

Пусть и действительны и различны. Разложим на простые дроби

, (3)

где .

Рассматривая отдельные слагаемые в (3) как суммы бесконечных геометрических прогрессий, получим


Выходит АР(2) есть частный случай общей линейной модели () с коэффициентами

Рассмотрим теперь автокорреляционную функцию процесса Юла. Умножим (1) по очереди на и , возьмем математические ожидания и разделим на . В итоге получим

Этих уравнений достаточно для определения через первые две автокорреляции и, наоборот, по известным можно найти .

Умножая теперь (1) на получим рекуррентное уравнение

из которого можно найти автокорреляции высоких порядков через первые автокорреляции. Тем самым, полностью определяется коррелограмма процесса Юла.

Исследуем вид коррелограммы процесса АР(2).

Выражение (4) можно рассматривать как разностное уравнение второго порядка относительно r с постоянными коэффициентами.

Общее решение такого уравнения имеет вид

,

где – корни характеристического уравнения

(5)

Легко видеть, что уравнения (2) и (5) эквивалентны с точностью до замены В на z и деления обоих частей на , так что корни этих уравнений совпадают, то есть

Общее решение разностного уравнения (4) есть

(6)

где коэффициенты А и В находят из граничных условий при j =0 и j =1.

Таким образом, в случае действительных корней коррелограмма АР(2) представляет собой, как видно из (6), смесь двух затухающих экспонент.

В случае комплектности корней и коррелограмма процесса АР(2) оказывается затухающей гармоникой.

Рассмотрим теперь как ведет себя частная автокорреляционная функция процесса Юла. Отличным от нуля оказывается лишь коэффициент , равный . Частные корреляции более высоких порядков равны нулю (подробнее этот процесс рассматривается дальше). Таким образом, частная коррелограмма процесса отрывается сразу после лага, равного единице.

В заключении отметим, что модели АР(2) оказались приемлемыми при описании поведения циклической природы, прообразом которого служит маятник, на который воздействуют малые случайные импульсы. Амплитуда и фаза такого колебательного процесса будут все время меняться.

Решение разностного относительно y выражения (1) или () состоит из двух частей: общего решения, содержащего р произвольных констант, и частного решения. Общее решение есть

где – есть постоянные коэффициенты,

(j =1,2,...,р ) – корни характеристического уравнения.

Стационарность ряда (2) имеет место, если корни уравнения (3) имеют модуль меньше единицы. Другими словами, корни должны лежать внутри единичного круга. Считая, что ряд имеет достаточно длинную предысторию, общим решением (2) можно пренебречь вследствие затухания.

Частое решение, как видно из (), есть

Последнее соотношение есть форма представления авторегрессионного процесса в виде общей линейной модели.

Последовательно умножим уравнение (1) на , возьмем математическое ожидание и разделим на . Получим систему уравнений относительно коэффициентов корреляции:

, k =1, 2, ..., p (4)

Учитывая, что , и вводя матричные обозначения

,

запишем (4) в виде

Pa = r (5)

Систему уравнений (5) называют системой Юла-Уокера. Из нее находим, что

a = r (6)

Таким образом, зная первые р автокорреляций временного ряда, можно найти по (3) автокорреляции более высокого порядка, то есть полностью восстановить автокорреляционную функцию (что уже отмечалось при анализе процессов АР(1) и АР(2)).

Поведение автокорреляционной функции зависит от корней характеристического полинома. Обычно коррелограмма процесса АР(р ) состоит из совокупности затухающих синусоид.

Если у процесса АР(2) частная автокорреляция членов ряда, разделенных 2-мя или большим числом членов, равна нулю, то у процесса АР(р ) нулю равны автокорреляции порядка р и выше. Выходит, частная коррелограмма процесса АР(р ) должна равняться нулю, начиная с некоторого момента. Правда, надо заметить, что этот факт имеет место для бесконечного ряда. Для конечных реализаций указать место обрыва коррелограммы часто затруднительно.

Итак, для процесса АР(р ) частная автокорреляционная функция обрывается на лаге р , тогда как автокорреляционная функция плавно спадает.

10.1.4 Процессы скользящего среднего

Обобщенная линейная модель для процессов скользящего среднего содержит лишь конечное число членов, то есть в (): =0 k > q .

Модель приобретает вид

(1)

(В (1) коэффициенты переобозначены через.)

Соотношение (1) определяет процесс скользящего среднего порядка q , или сокращенно СС(q ). Условие обратимости () для процесса СС(q ) выполняется, если корни многочлена b (В ) лежат вне единичного круга.

Найдем дисперсию процесса СС(q ):

Все смешанные произведения вида равны нулю в силу некоррелированности возмущений в разные моменты времени. Для нахождения автокорреляционной функции процесса СС(q ) последовательно умножим (1) на и возьмем математическое ожидание

В правой части выражения (2) останутся только те члены, которые отвечают одинаковым временным тактам (см. рис)


Следовательно, выражение (2) есть

(3)

поделив (3) на , получим

(4)


Тот факт, что автокорреляционная функция процесса СС(q) имеет конечную протяженность (q тактов) – характерная особенность такого процесса. Если известны, то (4) можно в принципе разрешить относительно параметров . Уравнения (4) нелинейные и в общем случае имеют несколько решений, однако условие обратимости всегда выделяет единственное решение.

Как уже отмечалось, обратимые процессы СС можно рассматривать как бесконечные АР- процессы -АР(¥). Следовательно, частная автокорреляцонная функция процесса СС(р ) имеет бесконечную протяженность. Итак, у процесса СС(q ) автокорреляционная функция обрывается на лаге q , тогда как частная автокорреляционная функция плавно спадает.

Хотя модели АР(р ) и СС(q ) позволяют описывать многие реальные процессы, число оцениваемых параметров может оказываться значительным. Для достижения большей гибкости и экономичности описания при подборе моделей к наблюдаемым временным рядам весьма полезными оказались смешанные модели, содержащие в себе и авторегрессию и скользящее среднее. Эти модели были предложены Боксом и Дженкинсом и получили название модели авторегрессии - скользящего среднего (сокращенно АРСС(р, q )):

С использованием оператора сдвига В модель (1) может быть представлена более компактно:


, ()

b (В )-оператор скользящего среднего порядка q .

Модель () может быть записаны и так:

Рассмотрим простейший смешанный процесс АРСС(1,1)

Согласно

(2)

Из соотношения (2) видно, что модель АРСС(1,1) является частным случаем общей линейной модели () с коэффициентами (j >0)

Из (2) легко получить выражение для дисперсии :

Для получения корреляционной функции воспользуемся тем же приемом, что и при анализе моделей авторегрессии. Умножим обе части модельного представления процесса АРСС(1,1)

на и возьмем математическое ожидание:

или (с учетом того, что второе слагаемое в правой части равенства равно нулю)

Поделив ковариации на дисперсию получаем выражения для автокорреляции

полученные соотношения показывают, что экспоненциально убывает от начального значения , зависящего от и при этом, если > , то затухание монотонное; при < – затухание колебательное.

Аналогично может быть построена автокорреляционная функция для общей модели АРСС(р, q ).

Умножим все члены (1) на . Возьмем математическое ожидание и в результате получим следующее разностное уравнение.

Где - взаимная ковариационная функция между y и . Поскольку возмущения в момент t и значения ряда в прошлые моменты (см(2)) не коррелируют, 0 при k>0.

Отсюда следует, что для значений q +1 автоковариации и автокорреляции удовлетворяют тем же соотношениям, что и в модели АР(р ):

В итоге оказывается, что при q вся автокорреляционная функция будет выражаться совокупностью затухающих экспонент и / или затухающих синусоидальных волн, а при q > p будет q - p значений , выпадающих из данной схемы.

Модель АРСС допускает обобщение на случай, когда случайный процесс является нестационарным. Ярким примером такого процесса являются «случайные блуждания»:

С использованием оператора сдвига модель (1) принимает вид

(2)

Из (2) видно, что процесс (1) расходящийся, поскольку. Характеристическое уравнение этого процесса имеет корень, равный единице, то есть имеет место пограничный случай, когда корень характеристического уравнения оказался на границе единичной окружности. В то же время, если перейти к первым разностям , то процесс окажется стационарным.

В общем случае полагается, что нестационарный авторегрессионный оператор в модели АРСС имеет один или несколько корней, равных единице. Иными словами, является нестационарным оператором авторегрессии порядка p + d ; d корней уравнения =0 равны единице, а остальные р корней лежат вне единичного круга. Тогда можно записать, что

,

где a (B ) – стационарный оператор авторегрессии порядка р (с корнями вне единичного круга).

Введем оператор разности , такой что =(1-B ) , тогда нестационарный процесс АРСС запишется как

, (3)

где b (B ) – обратимый оператор скользящего среднего (вне его корни лежат вне единичного круга).

Для разности порядка d , то есть модель

описывает уже стационарный обратимый процесс АРСС(р, q ).

Для того чтобы от ряда разностей вернуться к исходному ряду требуется оператор s , обратный :

Этот оператор называют оператором суммирования, поскольку

Если же исходной является разность порядка d , то для восстановления исходного ряда понадобится d - кратная итерация оператора s , иначе d - кратное суммирование (интегрирование). Поэтому процесс (3) принято называть процессом АРИСС, добавляя к АРСС термин интегрированный. Кратко модель (3) записывают как АРИСС(р, d , q ), где р – порядок авторегрессии, d – порядок разности, q – порядок скользящего среднего. Ясно, что при d =0 модель АРИСС переходит в модель АРСС.

На практике d обычно не превышает двух, то есть d .

Модель АРИСС допускает представление, аналогичное общей линейной модели, а так же в виде «чистого » процесса авторегрессии (бесконечного порядка). Рассмотрим, к примеру, процесс АРИСС (1, 1, 1):

Из (4) следует, что

В выражении (5) коэффициенты, начиная с третьего, вычисляются по формуле .

Представление (5) интересно тем, что веса, начиная с третьего, убывают по экспоненциальному закону. Поэтому, хотя формально зависит от всех прошлых значений, однако реальный вклад в текущее значение внесут несколько «недавних» значений ряда. Поэтому уравнение (5) более всего подходит для прогнозирования.

11.Прогнозирование по модели АРИСС

Как уже отмечалось, процессы АРИСС допускают представление в виде обобщенной линейной модели, то есть

Естественно искать будущее (прогнозное) значение ряда в момент в виде

Ожидаемое значение , которое мы будем обозначать как

=

Первая сумма в правой части последнего соотношения содержат лишь будущие возмущения (прогноз делается в момент t , когда известны прошлые значения и ряда и возмущений) и для них математическое ожидание равно 0 по определению. Что же касается второго слагаемого, то возмущения здесь уже состоялись, так что

Таким образом

Ошибка прогноза, представляющая расхождение между прогнозным значением и его ожиданием есть

=

Дисперсия ошибки отсюда есть

Прогнозирование по соотношению (1) в принципе возможно, однако затруднительно поскольку требует знания всех прошлых возмущений. К тому же для стационарных рядов скорость затухания часто оказывается недостаточной, не говоря уже о нестационарных процессах, для которых ряды расходятся.

Поскольку модель АРИСС допускает и другие представления, рассмотрим возможности их использования для прогнозирования. Пусть модель задана непосредственно разностным уравнением

По известным значениям ряда (результатам наблюдений) и оцененным значениям возмущений , опираясь на рекуррентную формулу (3) можно оценить ожидаемое значение ряда в момент t +1:


При прогнозировании на два такта следует вновь воспользоваться рекуррентным соотношением (3), где в качестве наблюденного значения ряда в момент t +1 следует взять предсказанную по (4) величину , то есть и так далее.

Наконец, возможно прогнозирование опираясь на представление процесса АРИСС в виде авторегрессии (). Как уже отмечалось, несмотря на то что порядок авторегрессии бесконечен, весовые коэффициенты в представлении ряда убывают довольно быстро, поэтому для вычисления прогноза достаточно умеренное число прошлых значений ряда.

Дисперсия ошибки прогноза на шагов вперед есть

и согласно выражению (2) дается выражением

В предположении, что случайные возмущения являются гаусовским белым шумом, то есть можно рассматривать доверительный интервал для прогнозного значения ряда стандартным образом.

12.Технология построения моделей АРИСС

Описанные выше теоретические схемы строились в предположении, что временной ряд имеет бесконечную предысторию, тогда как реально исследователю доступен ограниченный объем наблюдений. Модель приходится подбирать экспериментально, подгоняя ее к имеющимся в распоряжении данным. Поэтому с позиций теоретического применения теории анализа временных рядов определяющее значение имеют вопросы корректной спецификации модели АРИСС(p , d , q ) (ее идентификации) и последующего оценивания ее параметров.

На этапе идентификации наблюденные данные используются для определения подходящего класса моделей и делаются предварительные оценки ее параметров, то есть строится пробная модель. Затем пробная модель подгоняется к данным более тщательно; при этом первичные оценки, полученные на этапе идентификации выступают в качестве начальных значений в итеративных алгоритмах оценивания параметров. И наконец, на третьем этапе полученная модель подвергается диагностической проверке для выявления возможной неадекватности модели и выработки подходящих изменений в ней.Рассмотрим перечисленные этапы подробнее.

Идентификация модели

Цель идентификации – получить некоторое представление о величинах p , d , q и о параметрах модели. Идентификация модели распадается на две стадии

1. Определение порядка разности d исходного ряда .

2. Идентификация модели АРСС для ряда разностей .

Основной инструмент, используемый на обеих стадиях – автокорреляционная и частная автокорреляционная функции.

В теоретической части мы видели, что у стационарных моделей автокоррелящии спадают с ростом k весьма быстро (по корреляционному закону). Если же автокорреляционная функция затухает медленно и почти линейно, то это свидетельствует о нестационарности процесса, однако, возможно, его первая разность стационарно.

Построив коррелограмму для ряда разностей, вновь повторяют анализ и так далее. Считается, что порядок разности d , обеспечивающий стационарность, достигнут тогда, когда автокорреляционная функция процесса падает довольно быстро. На практике и достаточно просмотреть порядка 15-20 первых значений автокорреляции исходного ряда, его первые и вторые разности.

После того как будет получен стационарный ряд разностей, порядка d, изучают общий вид автокорреляционной и частной автокорреляционной функций этих разностей. Опираясь на теоретические свойства этих функций можно выбрать значения p и q для АР и СС операторов. Далее при выбранных p и q строятся начальные оценки параметров авторегрессии и скользящего среднего b =(). Для авторегрессионных процессов используются уравнения Юла-Уокера, где теоретические автокорреляции заменены на их выборочные оценки. Для процессов скользящего среднего порядка q только первые q автокорреляций отличны от нуля и могут быть выражены через параметры (см.). Заменяя их выборочными оценками и решая получающиеся уравнения относительно , получим оценку . Эти предварительные оценки можно использовать как начальные значения для получения на следующих шагах более эффективных оценок.

Для смешанных процессов АРСС процедура оценивания усложняется. Так для рассмотренного в п. процесса АРСС(1,1) параметры и , точнее их оценки, получаются из () с заменой и их выборочными оценками.

В общем случае вычисление начальных оценок процесса АРСС(p , q ) представляет многостадийную процедуру и здесь не рассматривается. Отметим только, что для практики особый интерес имеют АР и СС процессы 1-го и 2-го порядков и простейший смешанный процесс АРСС(1,1).

В заключение заметим, что оценки автокорреляций, на основе которых строятся процедуры идентификации могут иметь большие дисперсии (особенно в условиях недостаточного объема выборки – несколько десятков наблюдений) и быть сильно коррелированны. Поэтому говорить о строгом соответствии теоретической и эмпирической автокорреляционных функций не приходится. Это приводит к затруднениям при выборе p , d , q , поэтому для дальнейшего исследования могут быть выбраны несколько моделей.

линейный ряд система временной ряд

Размещено на http://www.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Федеральное агентство по образованию

Волгоградский государственный технический университет

КОНТРОЛЬНАЯ РАБОТА

по дисциплине: М одели и методы в экономике

на тему «Анализ временных рядов»

Выполнил: студентка группы ЭЗБ 291с Селиванова О. В.

Волгоград 2010г.

Введение

Классификация временных рядов

Методы анализа временных рядов

Заключение

Литература

Введение

Исследование динамики социально-экономических явлений, выявление и характеристика основных тенденций развития и моделей взаимосвязи дает основание для прогнозирования, то есть определения будущих размеров экономического явления.

Особенно актуальными становятся вопросы прогнозирования в условиях перехода на международные системы и методики учета и анализа социально-экономических явлений.

Важное место в системе учета занимают статистические методы. Применение и использование прогнозирования предполагает, что закономерность развития, действующая в прошлом, сохраняется и прогнозируемом будущем.

Таким образом, изучение методов анализа качества прогнозов является сегодня очень актуальным. Именно эта тема выбрана в качестве объекта исследования в данной работе.

Временной ряд -- это упорядоченная по времени последовательность значений некоторой произвольной переменной величины. Каждое отдельное значение данной переменной называется отсчётом временного ряда. Тем самым, временной ряд существенным образом отличается от простой выборки данных.

Классификация временных рядов

Временные ряды классифицируются по следующим признакам.

1. По форме представления уровней:

Ш ряды абсолютных показателей;

Ш относительных показателей;

Ш средних величин.

2. По характеру временного параметра:

Ш моментные. В моментных временных рядах уровни характеризуют значения показателя по состоянию на определенные моменты времени. В интервальных рядах уровни характеризуют значение показателя за определенные периоды времени.

Ш интервальные временные ряды. Важная особенность интервальных временных рядов абсолютных величин заключается в возможности суммирования их уровней.

3. По расстоянию между датами и интервалами времени:

Ш полные (равноотстоящие) - когда даты регистрации или окончания периодов следуют друг за другом с равными интервалами.

Ш неполные (не равноотстоящие) - когда принцип равных интервалов не соблюдается.

4. В зависимости от наличия основной тенденции:

Ш стационарные ряды - в которых среднее значение и дисперсия постоянны.

Ш нестационарные - содержащие основную тенденцию развития.

Методы анализа временных рядов

Временные ряды исследуются с различными целями. В одном ряде случаях бывает достаточно получить описание характерных особенностей ряда, а в другом ряде случаев требуется не только предсказывать будущие значения временного ряда, но и управлять его поведением. Метод анализа временного ряда определяется, с одной стороны, целями анализа, а с другой стороны, вероятностной природой формирования его значений.

Методы анализа временных рядов.

1. Спектральный анализ. Позволяет находить периодические составляющие временного ряда.

2. Корреляционный анализ. Позволяет находить существенные периодические зависимости и соответствующие им задержки (лаги) как внутри одного ряда (автокорреляция), так и между несколькими рядами. (кросскорреляция)

3. Сезонная модель Бокса-Дженкинса. Применяется когда временной ряд содержит явно выраженный линейный тренд и сезонные составляющие. Позволяет предсказывать будущие значения ряда. Модель была предложена в связи с анализом авиаперевозок.

4. Прогноз экспоненциально взвешенным скользящим средним. Простейшая модель прогнозирования временного ряда. Применима во многих случаях. В том числе, охватывает модель ценообразования на основе случайных блужданий.

Цель спектрального анализа - разложить ряд на функции синусов и косинусов различных частот, для определения тех, появление которых особенно существенно и значимо. Один из возможных способов сделать это - решить задачу линейной множественной регрессии, где зависимая переменная - наблюдаемый временной ряд, а независимые переменные или регрессоры: функции синусов всех возможных (дискретных) частот. Такая модель линейной множественной регрессии может быть записана как:

x t = a 0 + (для k = 1 до q)

Следующее общее понятие классического гармонического анализа в этом уравнении - (лямбда) -это круговая частота, выраженная в радианах в единицу времени, т.е. = 2** k , где - константа пи = 3.1416 и k = k/q. Здесь важно осознать, что вычислительная задача подгонки функций синусов и косинусов разных длин к данным может быть решена с помощью множественной линейной регрессии. Заметим, что коэффициенты a k при косинусах и коэффициенты b k при синусах - это коэффициенты регрессии, показывающие степень, с которой соответствующие функции коррелируют с данными. Всего существует q различных синусов и косинусов; интуитивно ясно, что число функций синусов и косинусов не может быть больше числа данных в ряде. Не вдаваясь в подробности, отметим, если n - количество данных, то будет n/2+1 функций косинусов и n/2-1 функций синусов. Другими словами, различных синусоидальных волн будет столько же, сколько данных, и вы сможете полностью воспроизвести ряд по основным функциям.

В итоге, спектральный анализ определяет корреляцию функций синусов и косинусов различной частоты с наблюдаемыми данными. Если найденная корреляция (коэффициент при определенном синусе или косинусе) велика, то можно заключить, что существует строгая периодичность на соответствующей частоте в данных.

Анализ распределенных лагов - это специальный метод оценки запаздывающей зависимости между рядами. Например, предположим, вы производите компьютерные программы и хотите установить зависимость между числом запросов, поступивших от покупателей, и числом реальных заказов. Вы могли бы записывать эти данные ежемесячно в течение года и затем рассмотреть зависимость между двумя переменными: число запросов и число заказов зависит от запросов, но зависит с запаздыванием. Однако очевидно, что запросы предшествуют заказам, поэтому можно ожидать, что число заказов. Иными словами, в зависимости между числом запросов и числом продаж имеется временной сдвиг (лаг) (см. также автокорреляции и кросскорреляции).

Такого рода зависимости с запаздыванием особенно часто возникают в эконометрике. Например, доход от инвестиций в новое оборудование отчетливо проявится не сразу, а только через определенное время. Более высокий доход изменяет выбор жилья людьми; однако эта зависимость, очевидно, тоже проявляется с запаздыванием.

Во всех этих случаях, имеется независимая или объясняющая переменная, которая воздействует на зависимые переменные с некоторым запаздыванием (лагом). Метод распределенных лагов позволяет исследовать такого рода зависимость.

Общая модель

Пусть y - зависимая переменная, a независимая или объясняющая x. Эти переменные измеряются несколько раз в течение определенного отрезка времени. В некоторых учебниках по эконометрике зависимая переменная называется также эндогенной переменной, a зависимая или объясняемая переменная экзогенной переменной. Простейший способ описать зависимость между этими двумя переменными дает следующее линейное уравнение:

В этом уравнении значение зависимой переменной в момент времени t является линейной функцией переменной x, измеренной в моменты t, t-1, t-2 и т.д. Таким образом, зависимая переменная представляет собой линейные функции x и x, сдвинутых на 1, 2, и т.д. временные периоды. Бета коэффициенты (i) могут рассматриваться как параметры наклона в этом уравнении. Будем рассматривать это уравнение как специальный случай уравнения линейной регрессии. Если коэффициент переменной с определенным запаздыванием (лагом) значим, то можно заключить, что переменная y предсказывается (или объясняется) с запаздыванием.

Процедуры оценки параметров и прогнозирования, описанные в разделе, предполагают, что математическая модель процесса известна. В реальных данных часто нет отчетливо выраженных регулярных составляющих. Отдельные наблюдения содержат значительную ошибку, тогда как вы хотите не только выделить регулярные компоненты, но также построить прогноз. Методология АРПСС, разработанная Боксом и Дженкинсом (1976), позволяет это сделать. Данный метод чрезвычайно популярен во многих приложениях, и практика подтвердила его мощность и гибкость (Hoff, 1983; Pankratz, 1983; Vandaele, 1983). Однако из-за мощности и гибкости, АРПСС - сложный метод. Его не так просто использовать, и требуется большая практика, чтобы овладеть им. Хотя часто он дает удовлетворительные результаты, они зависят от квалификации пользователя (Bails and Peppers, 1982). Следующие разделы познакомят вас с его основными идеями. Для интересующихся кратким, рассчитанным на применение, (нематематическим) введением в АРПСС, рекомендуем книгу McCleary, Meidinger, and Hay (1980).

Модель АРПСС

Общая модель, предложенная Боксом и Дженкинсом (1976) включает как параметры авторегрессии, так и параметры скользящего среднего. Именно, имеется три типа параметров модели: параметры авто регрессии (p), порядок разности (d), параметры скользящего среднего (q). В обозначениях Бокса и Дженкинса модель записывается как АРПСС (p, d, q). Например, модель (0, 1, 2) содержит 0 (нуль) параметров авто регрессии (p) и 2 параметра скользящего среднего (q), которые вычисляются для ряда после взятия разности с лагом 1.

Как отмечено ранее, для модели АРПСС необходимо, чтобы ряд был стационарным, это означает, что его среднее постоянно, а выборочные дисперсия и автокорреляция не меняются во времени. Поэтому обычно необходимо брать разности ряда до тех пор, пока он не станет стационарным (часто также применяют логарифмическое преобразование для стабилизации дисперсии). Число разностей, которые были взяты, чтобы достичь стационарности, определяются параметром d (см. предыдущий раздел). Для того чтобы определить необходимый порядок разности, нужно исследовать график ряда и автокоррелограмму. Сильные изменения уровня (сильные скачки вверх или вниз) обычно требуют взятия несезонной разности первого порядка (лаг=1). Сильные изменения наклона требуют взятия разности второго порядка. Сезонная составляющая требует взятия соответствующей сезонной разности (см. ниже). Если имеется медленное убывание выборочных коэффициентов автокорреляции в зависимости от лага, обычно берут разность первого порядка. Однако следует помнить, что для некоторых временных рядов нужно брать разности небольшого порядка или вовсе не брать их. Заметим, что чрезмерное количество взятых разностей приводит к менее стабильным оценкам коэффициентов.

На этом этапе (который обычно называют идентификацией порядка модели, см. ниже) вы также должны решить, как много параметров авто регрессии (p) и скользящего среднего (q) должно присутствовать в эффективной и экономной модели процесса. (Экономность модели означает, что в ней имеется наименьшее число параметров и наибольшее число степеней свободы среди всех моделей, которые подгоняются к данным). На практике очень редко бывает, что число параметров p или q больше 2 (см. ниже более полное обсуждение).

Следующий, после идентификации, шаг (Оценивание) состоит в оценивании параметров модели (для чего используются процедуры минимизации функции потерь, см. ниже; более подробная информация о процедурах минимизации дана в разделе Нелинейное оценивание). Полученные оценки параметров используются на последнем этапе (Прогноз) для того, чтобы вычислить новые значения ряда и построить доверительный интервал для прогноза. Процесс оценивания проводится по преобразованным данным (подвергнутым применению разностного оператора). До построения прогноза нужно выполнить обратную операцию (интегрировать данные). Таким образом, прогноз методологии будет сравниваться с соответствующими исходными данными. На интегрирование данных указывает буква П в общем названии модели (АРПСС = Авто регрессионное Проинтегрированное Скользящее Среднее).

Дополнительно модели АРПСС могут содержать константу, интерпретация которой зависит от подгоняемой модели. Именно, если (1) в модели нет параметров авто регрессии, то константа есть среднее значение ряда, если (2) параметры авто регрессии имеются, то константа представляет собой свободный член. Если бралась разность ряда, то константа представляет собой среднее или свободный член преобразованного ряда. Например, если бралась первая разность (разность первого порядка), а параметров авто регрессии в модели нет, то константа представляет собой среднее значение преобразованного ряда и, следовательно, коэффициент наклона линейного тренда исходного.

Экспоненциальное сглаживание - это очень популярный метод прогнозирования многих временных рядов. Исторически метод был независимо открыт Броуном и Холтом.

Простое экспоненциальное сглаживание

Простая и прагматически ясная модель временного ряда имеет следующий вид:

где b - константа и (эпсилон) - случайная ошибка. Константа b относительно стабильна на каждом временном интервале, но может также медленно изменяться со временем. Один из интуитивно ясных способов выделения b состоит в том, чтобы использовать сглаживание скользящим средним, в котором последним наблюдениям приписываются большие веса, чем предпоследним, предпоследним большие веса, чем пред предпоследним и т.д. Простое экспоненциальное именно так и устроено. Здесь более старым наблюдениям приписываются экспоненциально убывающие веса, при этом, в отличие от скользящего среднего, учитываются все предшествующие наблюдения ряда, а не те, что попали в определенное окно. Точная формула простого экспоненциального сглаживания имеет следующий вид:

S t = *X t + (1-)*S t-1

Когда эта формула применяется рекурсивно, то каждое новое сглаженное значение (которое является также прогнозом) вычисляется как взвешенное среднее текущего наблюдения и сглаженного ряда. Очевидно, результат сглаживания зависит от параметра (альфа). Если равно 1, то предыдущие наблюдения полностью игнорируются. Если равно 0, то игнорируются текущие наблюдения. Значения между 0, 1 дают промежуточные результаты.

Эмпирические исследования Makridakis и др. (1982; Makridakis, 1983) показали, что весьма часто простое экспоненциальное сглаживание дает достаточно точный прогноз.

Выбор лучшего значения параметра (альфа)

Gardner (1985) обсуждает различные теоретические и эмпирические аргументы в пользу выбора определенного параметра сглаживания. Очевидно, из формулы, приведенной выше, следует, что должно попадать в интервал между 0 (нулем) и 1 (хотя Brenner et al., 1968, для дальнейшего применения анализа АРПСС считают, что 0<<2). Gardner (1985) сообщает, что на практике обычно рекомендуется брать меньше.30. Однако в исследовании Makridakis et al., (1982), большее.30, часто дает лучший прогноз. После обзора литературы, Gardner (1985) приходит к выводу, что лучше оценивать оптимально по данным (см. ниже), чем просто "гадать" или использовать искусственные рекомендации.

Оценивание лучшего значения с помощью данных. На практике параметр сглаживания часто ищется с поиском на сетке. Возможные значения параметра разбиваются сеткой с определенным шагом. Например, рассматривается сетка значений от = 0.1 до = 0.9, с шагом 0.1. Затем выбирается, для которого сумма квадратов (или средних квадратов) остатков (наблюдаемые значения минус прогнозы на шаг вперед) является минимальной.

Индексы качества подгонки

Самый прямой способ оценки прогноза, полученного на основе определенного значения - построить график наблюдаемых значений и прогнозов на один шаг вперед. Этот график включает в себя также остатки (отложенные на правой оси Y). Из графика ясно видно, на каких участках прогноз лучше или хуже.

Такая визуальная проверка точности прогноза часто дает наилучшие результаты. Имеются также другие меры ошибки, которые можно использовать для определения оптимального параметра (см. Makridakis, Wheelwright, and McGee, 1983):

Средняя ошибка. Средняя ошибка (СО) вычисляется простым усреднением ошибок на каждом шаге. Очевидным недостатком этой меры является то, что положительные и отрицательные ошибки аннулируют друг друга, поэтому она не является хорошим индикатором качества прогноза.

Средняя абсолютная ошибка. Средняя абсолютная ошибка (САО) вычисляется как среднее абсолютных ошибок. Если она равна 0 (нулю), то имеем совершенную подгонку (прогноз). В сравнении со средней квадратической ошибкой, эта мера "не придает слишком большого значения" выбросам.

Сумма квадратов ошибок (SSE), среднеквадратическая ошибка. Эти величины вычисляются как сумма (или среднее) квадратов ошибок. Это наиболее часто используемые индексы качества подгонки.

Относительная ошибка (ОО). Во всех предыдущих мерах использовались действительные значения ошибок. Представляется естественным выразить индексы качества подгонки в терминах относительных ошибок. Например, при прогнозе месячных продаж, которые могут сильно флуктуировать (например, по сезонам) из месяца в месяц, вы можете быть вполне удовлетворены прогнозом, если он имеет точность?10%. Иными словами, при прогнозировании абсолютная ошибка может быть не так интересна как относительная. Чтобы учесть относительную ошибку, было предложено несколько различных индексов (см. Makridakis, Wheelwright, and McGee, 1983). В первом относительная ошибка вычисляется как:

ОО t = 100*(X t - F t)/X t

где X t - наблюдаемое значение в момент времени t, и F t - прогноз (сглаженное значение).

Средняя относительная ошибка (СОО). Это значение вычисляется как среднее относительных ошибок.

Средняя абсолютная относительная ошибка (САОО). Как и в случае с обычной средней ошибкой отрицательные и положительные относительные ошибки будут подавлять друг друга. Поэтому для оценки качества подгонки в целом (для всего ряда) лучше использовать среднюю абсолютную относительную ошибку. Часто эта мера более выразительная, чем среднеквадратическая ошибка. Например, знание того, что точность прогноза ±5%, полезно само по себе, в то время как значение 30.8 для средней квадратической ошибки не может быть так просто проинтерпретировано.

Автоматический поиск лучшего параметра. Для минимизации средней квадратической ошибки, средней абсолютной ошибки или средней абсолютной относительной ошибки используется квази-ньютоновская процедура (та же, что и в АРПСС). В большинстве случаев эта процедура более эффективна, чем обычный перебор на сетке (особенно, если параметров сглаживания несколько), и оптимальное значение можно быстро найти.

Первое сглаженное значение S 0 . Если вы взгляните снова на формулу простого экспоненциального сглаживания, то увидите, что следует иметь значение S 0 для вычисления первого сглаженного значения (прогноза). В зависимости от выбора параметра (в частности, если близко к 0), начальное значение сглаженного процесса может оказать существенное воздействие на прогноз для многих последующих наблюдений. Как и в других рекомендациях по применению экспоненциального сглаживания, рекомендуется брать начальное значение, дающее наилучший прогноз. С другой стороны, влияние выбора уменьшается с длиной ряда и становится некритичным при большом числе наблюдений.

экономический временный ряд статистический

Заключение

Анализ временных рядов -- совокупность математико-статистических методов анализа, предназначенных для выявления структуры временных рядов и для их прогноза. Сюда относятся, в частности, методы регрессионного анализа. Выявление структуры временного ряда необходимо для того, чтобы построить математическую модель того явления, которое является источником анализируемого временного ряда. Прогноз будущих значений временного ряда используется для эффективного принятия решений.

Временные ряды исследуются с различными целями. Метод анализа временного ряда определяется, с одной стороны, целями анализа, а с другой стороны, вероятностной природой формирования его значений.

Основными методами исследования временных рядов являются:

Ш Спектральный анализ.

Ш Корреляционный анализ

Ш Сезонная модель Бокса-Дженкинса.

Ш Прогноз экспоненциально взвешенным скользящим средним.

Литература

1. Безручко Б. П., Смирнов Д. А. Математическое моделирование и хаотические временные ряды. -- Саратов: ГосУНЦ "Колледж", 2005. -- ISBN 5-94409-045-6

2. Блехман И. И., Мышкис А. Д., Пановко Н. Г., Прикладная математика: Предмет, логика, особенности подходов. С примерами из механики: Учебное пособие. -- 3-е изд., испр. и доп. -- М.: УРСС, 2006. -- 376 с. ISBN 5-484-00163-3

3. Введение в математическое моделирование. Учебное пособие. Под ред. П. В. Трусова. -- М.: Логос, 2004. -- ISBN 5-94010-272-7

4. Горбань А. Н., Хлебопрос Р. Г., Демон Дарвина: Идея оптимальности и естественный отбор. -- М: Наука. Гл ред. физ.-мат. лит., 1988. -- 208 с. (Проблемы науки и технического прогресса) ISBN 5-02-013901-7 (Глава «Изготовление моделей»).

5. Журнал Математическое моделирование (основан в 1989 году)

6. Малков С. Ю., 2004. Математическое моделирование исторической динамики: подходы и модели // Моделирование социально-политической и экономической динамики / Ред. М. Г. Дмитриев. -- М.: РГСУ. -- с. 76-188.

7. Мышкис А. Д., Элементы теории математических моделей. -- 3-е изд., испр. -- М.: КомКнига, 2007. -- 192 с ISBN 978-5-484-00953-4

8. Самарский А. А., Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры.. -- 2-е изд., испр.. -- М.: Физматлит, 2001. -- ISBN 5-9221-0120-X

9. Советов Б. Я., Яковлев С. А., Моделирование систем: Учеб. для вузов -- 3-е изд., перераб. и доп. -- М.: Высш. шк., 2001. -- 343 с. ISBN 5-06-003860-2

Размещено на Allbest.ru

Подобные документы

    Понятие и основные этапы разработки прогноза. Задачи анализа временных рядов. Оценка состояния и тенденций развития прогнозирования на основе анализа временных рядов СУ-167 ОАО "Мозырьпромстрой", практические рекомендации по его совершенствованию.

    курсовая работа , добавлен 01.07.2013

    Методика проведения анализа динамических рядов социально-экономических явлений. Компоненты, формирующие уровни при анализе рядов динамики. Порядок составления модели экспорта и импорта Нидерландов. Уровни автокорреляции. Корреляция рядов динамики.

    курсовая работа , добавлен 13.05.2010

    Методы анализа структуры временных рядов, содержащих сезонные колебания. Рассмотрение подхода методом скользящей средней и построение аддитивной (или мультипликативной) модели временного ряда. Расчет оценок сезонной компоненты в мультипликативной модели.

    контрольная работа , добавлен 12.02.2015

    Анализ системы показателей, характеризующих как адекватность модели, так и ее точность; определение абсолютной и средней ошибок прогноза. Основные показатели динамики экономических явлений, использование средних значений для сглаживания временных рядов.

    контрольная работа , добавлен 13.08.2010

    Сущность и отличительные черты статистических методов анализа: статистическое наблюдение, группировка, анализа рядов динамики, индексный, выборочный. Порядок проведения анализа рядов динамики, анализа основной тенденции развития в рядах динамики.

    курсовая работа , добавлен 09.03.2010

    Проведение экспериментального статистического исследования социально-экономических явлений и процессов Смоленской области на основе заданных показателей. Построение статистических графиков, рядов распределения, вариационных рядов, их обобщение и оценка.

    курсовая работа , добавлен 15.03.2011

    Виды временных рядов. Требования, предъявляемые к исходной информации. Описательные характеристики динамики социально-экономических явлений. Прогнозирование по методу экспоненциальных средних. Основные показатели динамики экономических показателей.

    контрольная работа , добавлен 02.03.2012

    Понятие и значение временного ряда в статистике, его структура и основные элементы, значение. Классификация и разновидности временных рядов, особенности сферы их применения, отличительные характеристики и порядок определения в них динамики, стадии, ряды.

    контрольная работа , добавлен 13.03.2010

    Определение понятия цен на продукцию и услуги; принципы их регистрации. Расчет индивидуальных и общих индексов стоимости товаров. Сущность базовых методов социально-экономических исследований - структурных средних, рядов распределения и рядов динамики.

    курсовая работа , добавлен 12.05.2011

    Машинное обучение и статистические методы анализа данных. Оценка точности прогнозирования. Предварительная обработка данных. Методы классификации, регрессии и анализа временных рядов. Методы ближайших соседей, опорных векторов, спрямляющего пространства.