Минералы железа. Состав и свойства железной руды Минералы железа

Железо - самый распространенный после алюминия металл на земном шаре; оно составляет около 5% земной коры. Встречается железо в виде различных соединений: оксидов, сульфидов, силикатов. В свободном виде железо находят в метеоритах, изредка встречается самородное железо (феррит) в земной коре как продукт застывания магмы.

Железо входит в состав многих минералов, из которых слагаются месторождения железных руд.

Основные рудные минералы железа: Гематит (железный блеск, красный железняк) - Fe 2 0 3 (до 70% Fe); Магнетит (магнитный железняк) - Ре 3 0 4 (до 72,4%> Fe); Гетит - FeOOFI

Гидрогетыт - Fe00H*nH 2 0 (лимонит) - (около 62% Fe); Сидерит - Fe(C0 3) (около 48,2% Fe); Пирит - FeS 2

Месторождения железных руд образуются в различных геологических условиях; с этим связано разнообразие состава руд и условий их залегания. Железные руды разделяются на следующие промышленные типы:

Бурые железняки - руды водной окиси железа (главный минерал - гидрогетит), 30-55%) железа.

Красные железняки, или гематитовые руды (главный минерал - гематит, иногда с магнетитом), 51 -66% железа.

Магнитные железняки (главный минерал - магнетит), 50-65% железа.

Сидеритовые или карбонатные осадочные руды, 30-35% железа.

Силикатные осадочные железные руды, 25-40% железа.

Большие запасы железных руд находятся на Урале, где целые горы (например Магнитная, Качканар, Высокая и др.) образованы магнитным железняком. Большие залежи железных руд имеются вблизи Курска, на Кольском полуострове, в Западной и Восточной Сибири, на дальнем Востоке. Богатые залежи имеются на Украине.

Железо является также одним из наиболее распространенных элементов в природных водах, где среднее содержание его колеблется в интервале 0,01-26 мг/л.

Животные организмы и растения аккумулируют железо. Активно аккумулируют железо некоторые виды водорослей, бактерии.

В теле человека содержание железа колеблется от 4 до 7т (в тканях, крови, внутренних органах).Железо поступает в организм с пищей. Суточная потребность взрослого человека в железе составляет 11-30мг. В основных пищевых продуктах содержится следующее количество железа (в мкг/100г.): Рыба - 1000 Мясо - 3000 Молоко - 70 Хлеб - 4000

В теле человека содержание железа колеблется от 4 до 7г (в тканях, крови, внутренних органах).Железо поступает в организм с пищей. Суточная потребность взрослого человека в железе составляет 11-30мг. В основных пищевых продуктах содержится следующее количество железа (в мкг/100г.): Рыба - 1000 Мясо-3000 Молоко - 70 Хлеб - 4000

Картофель, овощи, фрукты - от 600 до 900

Биологическая роль железа

Для нормального роста и выполнения биологических функций человеку и животным кроме витаминов необходим целый ряд неорганических элементов. Эти элементы можно разделить на 2 класса макроэлементы и микроэлементы.

Макроэлементы, к которым относятся кальций, магний, натрий, калий, фосфор, сера и хлор, требуются организму в относительно больших количествах (порядка нескольких граммов в сутки). Часто они выполняют более чем одну функцию.

Более непосредственное отношение к действию ферментов имеют незаменимые микроэлементы, суточная потребность в которых не превышает нескольких миллиграммов, т.е. сопоставима с потребностью в витаминах. Известно, что в пище животных обязательно должно содержаться около 15 микроэлементов.

Большинство незаменимых микроэлементов служит в качестве кофакторов или простетических групп ферментов. При этом они выполняют какую-нибудь одну функцию из трех (по меньшей мере) возможных функций. Во-первых, незаменимый микроэлемент сам по себе может обладать каталитической активностью по отношению к той иди иной химической реакции, скорость которой в значительной степени возрастает в присутствии ферментного белка. Это особенно характерно для ионов железа и меди. Во-вторых, ион металла может образовывать комплекс одновременно и с субстратом и с активным центром фермента, в результате оба они сближаются друг с другом и переходят в активную форму. Наконец, в-третьих, ион металла может играть роль мощного акцептора электронов на определенной стадии каталитического цикла.

Железо относится к тем микроэлементам, биологические функции которых изучены наиболее полно.

Значение железа для организма человека, как и в целом для живой природы, трудно переоценить. Подтверждением этому может быть не только большая распространенность его в природе, но и важная роль в сложных метаболических процессах, происходящих в живом организме. Биологическая ценность железа определяется многогранностью его функций, незаменимостью другими металлами в сложных биохимических процессах, активным участием в клеточном дыхании, обеспечивающем нормальное функционирование тканей и организма человека.

Железо принадлежит к восьмой группе элементов периодической системы Д. И. Менделеева (атомный номер 26, атомный вес 55,847 , плотность 7,86 г/см). Ценным его свойством является способность легко окисляться и восстанавливаться, образовывать сложные соединения со значительно отличающимися биохимическими свойствами, непосредственно участвовать в реакциях электронного транспорта.

Важнейшая геохимическая особенность железа -- наличие у него нескольких степеней окисления. Железо в нейтральной форме -- металлическое -- слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO -- основная форма нахождения железа в мантии и земной коре. Окисное железо Fe2O3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород.

По кристаллохимическим свойствам ион Fe2+ близок к ионам Mg2+ и Ca2+ -- другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

В земной коре железо распространено достаточно широко -- на его долю приходится около 4,1 % массы земной коры (4-е место среди всех элементов, 2-е среди металлов). В мантии и земной коре железо сосредоточено главным образом в силикатах, при этом его содержание значительно в основных и ультраосновных породах, и мало -- в кислых и средних породах.

Известно большое число руд и минералов, содержащих железо. Рудами называются природные минералы, содержащие железо в таких количествах и соединениях, при которых промышленное извлечение из них металла экономически целесообразно. Содержание железа в промышленных рудах изменяется в широких пределах - от 16 до 70%. В зависимости от химического состава железные руды применяются для выплавки чугуна в естественном виде или, если они содержат менее 50% Fe, после обогащения. Бульшая часть железных руд используется для выплавки чугунов, сталей, а также ферросплавов. В относительно небольших количествах они используются в качестве природных красок (охры) и утяжелителей буровых глинистых растворов.

Наибольшее практическое значение имеют красный железняк (гематит, Fe2O3; содержит до 70 % Fe), магнитный железняк (магнетит, FeO.Fe2O3, Fe3O4; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит и гидрогётит, соответственно FeOOH и FeOOH·nH2O). Гётит и гидрогётит чаще всего встречаются в коре выветривания, образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые, или бобовые, железные руды. В них часто встречается вивианит Fe(3PO4)2·8H2O, имеющий форму чёрных удлинённых кристаллов и радиально-лучистых агрегатов.

В природе также широко распространены сульфиды железа -- пирит FeS2 (серный или железный колчедан) и пирротин. Они не являются железной рудой -- пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

Другие часто встречающиеся минералы железа:

· Сидерит -- FeCO3 -- содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом.

· Марказит -- FeS2 -- содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов.

· Лёллингит -- FeAs2 -- содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов.

· Миспикель -- FeAsS -- содержит 34,3 % железа. Встречается в виде белых моноклинных призм.

· Мелантерит -- FeSO4·7H2O -- реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие.

· Вивианит -- Fe3(PO4)2·8H2O -- встречается в виде сине-серых или зелено-серых моноклинных кристаллов.

В земной коре содержатся и другие, менее распространенные минералы железа, например.

  • Обозначение - Fe (Iron);
  • Период - IV;
  • Группа - 8 (VIII);
  • Атомная масса - 55,845;
  • Атомный номер - 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Соединения железа :

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа .

Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
    3Fe + 2O 2 = Fe 3 O 4 ;
  • окисление железа при низких температурах:
    4Fe + 3O 2 = 2Fe 2 O 3 ;
  • реагирует с водяным паром:
    3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe 3 C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl 2 = FeCl 2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl 2 + H 2 ;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь .

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи .

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
    • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
    • 800°C - FeO + CO = Fe + CO 2 ;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO 2 + 2C = Si + 2CO;
    • Mn 2 O 3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO 3 = CaO + CO 2 ;
    • CaO + SiO 2 = CaSiO 3 ;
    • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).

Цели . Познакомить с положением железа в периодической системе химических элементов Д.И.Менделеева, строением атома, природными месторождениями, соединениями, современными методами получения, свойствами и применением железа. Способствовать выработке у школьников навыков коллективного труда и товарищеской взаимопомощи.
Оборудование и реактивы . Пробирки, таблицы по доменному производству; растворы HCl и H 2 SO 4 , порошки Fe(OH) 2 и Fe(OH) 3 , железные опилки, растворы желтой кровяной соли K 4 и красной кровяной соли K 3 .
Тип урока . Элементы лекции, рассказ, беседа.

ХОД УРОКА

Учитель . Сегодня мы продолжим речь о металлах, вы узнаете о положении железа в периодической системе химических элементов, о строении его атома, о химических свойствах металла железа, его соединениях, получении и применении, роли железа в развитии человеческого общества. Какова роль железа в человеческом обществе?
Ученик . Железо сыграло большую роль в развитии человеческого общества и не потеряло своего значения в настоящее время. Из всех металлов оно наиболее широко используется в современной промышленности.
Первобытный человек начал использовать железные орудия труда за несколько тысячелетий до нашей эры. В те годы единственным источником этого металла были упавшие на землю метеориты, которые содержат довольно чистое железо. В середине 2-го тысячелетия до
н. э. в Египте была освоена металлургия железа – получение его из железных руд. Это событие стало началом железного века в истории человечества, который пришел на смену каменному и бронзовому векам. На территории России начало железного века относится к рубежу 2–1-го тысячелетий до н. э.

Учитель . Каково распространение железа в природе?
Ученик . Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила советская автоматическая станция «Луна», обнаружено железо в неокисленном состоянии .
Учитель . В виде каких соединений железо встречается в природе?
Ученик . Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30–70% и более. (Пользуясь физической картой России, ученик показывает и называет месторождения соединений железа.)
Основными железными рудами являются:

гематит Fe 2 O 3 – содержит до 65% железа, такие месторождения железа встречаются в Криворожском районе;
лимонит Fe 2 O 3 n H 2 O – содержит до 60% железа, месторождения лимонита встречаются в Крыму, например керченское месторождение;
пирит FeS 2 – содержит примерно 47% железа, месторождения пирита встречаются на Урале.
Учитель . Как получают железо в промышленности?
Ученик . В настоящее время основным промышленным способом переработки железных руд является производство чугуна доменным процессом. Чугун – это сплав железа, содержащий
2,2–4% углерода, а также кремний, марганец, фосфор, серу. В дальнейшем большая часть чугуна подвергается переделу в сталь. Сталь отличается от чугуна главным образом меньшим содержанием углерода (до 2%), фосфора и серы.

Учитель . Большое внимание уделяется разработке методов прямого получения железа из руд без осуществления доменного процесса. В чем преимущество прямого получения железа? Главное состоит в том, что восстановление оксидов железа можно проводить без участия металлургического кокса. Его заменяют более дешевым и распространенным топливом – бурым углем, природным газом. При прямом получении железа можно использовать и бедные железные руды, шлаки других производств, содержащие железо.
Прямое восстановление железа проводят в слегка наклоненных вращающихся печах, похожих на печи, в которых получают цемент. В печь непрерывно загружают руду и уголь, которые постепенно перемещаются к выходу, противотоком идет нагретый воздух, создается температура ниже точки плавления железа.
Чтобы получить технически чистое железо прямым восстановлением, руду подвергают обогащению. При этом удается повысить массовую долю железа, отделить пустую породу (куски железа легко отделяются от шлака) и снизить содержание вредных примесей (серы и фосфора). В процессе обогащения руду измельчают в дробильных установках и подают в магнитный сепаратор. Последний представляет собой барабан с электромагнитами, в который при помощи транспортера подается измельченная руда. Пустая порода свободно проходит через магнитное поле и падает. Зерна руды, содержащие магнитные минералы железа, намагничиваются и отделяются от барабана позднее пустой породы. Такую магнитную сепарацию можно проводить несколько раз.
Затем руду обогащают методом флотации . Для этого руду помещают в емкость с водой, где растворяют флотационные поверхностно-активные вещества, которые избирательно абсорбируются на поверхности полезного минерала. В результате абсорбции флотореагента частицы минерала не смачиваются водой и в ней не тонут. Через раствор пропускают воздух, пузырьки которого прикрепляются к кусочкам минерала и поднимают их на поверхность. Частицы пустой породы хорошо смачиваются водой и оседают на дне емкости. Обогащенную руду собирают с поверхности раствора вместе с пеной. В результате содержание железа в руде может быть повышено до 70–72%
.
Рассмотрим схему одного из способов прямого получения железа. Процесс проводят в вертикальной печи, в которую сверху подают обогащенную руду, а снизу – газ, служащий восстановителем. Этот газ получают сжиганием природного в недостатке кислорода. Восстановительный газ содержит 30% СО, 55% Н 2 , 13% Н 2 О и 2% СО 2 . Следовательно, восстановителями служат оксид углерода(II) СО и водород:

Fe 2 O 3 + 3СО = 2Fe + 3CO 2 ,

Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O.

Восстановление ведут при температуре 850–900 °С, что ниже температуры плавления железа (1539 °С).
Для многих современных отраслей техники требуется железо очень высокой степени чистоты. Тогда очистку технического железа проводят карбонильным методом. Карбонилы – это соединения металлов с оксидом углерода(II) СО. Железо взаимодействует с СО при повышенном давлении и температуре 100–200 °С, образуя пентакарбонил железа:

Пентакарбонил железа – жидкость, которую легко можно отделить от примесей перегонкой. При температуре около 250 °С карбонил легко разлагается, образуя порошок железа:

Fe(CO) 5 = Fe + 5CO.

Если полученный порошок подвергнуть спеканию в вакууме, то получится металл, содержащий 99,98–99,999% железа. Зачем нужно получать металл такой степени чистоты?
Ученик . Железо высокой степени чистоты нужно прежде всего для изучения его свойств, т.е. для научных целей. Если бы не удалось получить чистое железо, то не узнали бы, что это – мягкий, легко обрабатывающийся металл. Химически чистое железо намного более инертно, чем железо техническое. Важной отраслью использования чистого железа является производство специальных ферросплавов, свойства которых ухудшаются от присутствия примесей .
Учитель . Каковы же химические свойства железа?
Ученик . Химические свойства железа обусловлены строением электронных оболочек его атомов. Железо – элемент побочной подгруппы VIII группы 4-го большого периода. Железо относится к d-элементам, электронная формула атома имеет окончание …3d 6 4s 2 . Железо в соединениях проявляет степени окисления +2 и +3. Максимальная степень окисления железа +6. Она проявляется в ферратах – солях несуществующей железной кислоты. Например, Na 2 FeО 4 – феррат натрия .
Учитель . Как реагирует железо с кислородом?
Ученик . В электрохимическом ряду напряжений железо стоит левее водорода, т. е. имеет более отрицательный стандартный электродный потенциал. Поэтому железо легко растворяется в соляной и разбавленной серной кислотах с выделением водорода :

Fe + 2HCl = FeCl 2 + H 2 ,

Fe + H 2 SO 4 (разб.) = FeSO 4 + H 2 .

Более концентрированную серную кислоту (40–60%) железо восстанавливает до
оксида серы(IV):

Fe + 2H 2 SO 4 = FeSO 4 + SO 2 + 2H 2 O.

В серной кислоте еще более высокой концентрации (от 80 до 100%) железопассивируется – покрывается тонкой и прочной оксидной пленкой, которая предохраняет металл от растворения. Такое же явление пассивации наблюдается и в сильно концентрированной азотной кислоте, поэтому концентрированные серную и азотную кислоты можно перевозить в железной таре.
С разбавленной азотной кислотой железо может реагировать с образованием соли железа(II), а с более концентрированным раствором кислоты – соли железа(III) и различных продуктов восстановления кислоты, например:

4Fe + 10HNO 3 = 4Fe(NO 3) 2 + NH 4 NO 3 + 3H 2 O,

3Fe + 8HNO 3 = 3Fe(NO 3) 2 +2NO + 4H 2 O,

Fe + 6HNO 3 = Fe(NO 3) 3 + 3NO 2 + 3H 2 O.

Учитель . Вспомните, что называется коррозией. Каковы ее последствия?
Ученик . Коррозия – это разрушение металла под действием окружающей среды. Образование ржавчины можно представить в следующем виде:

4Fe + 3О 2 + 6H 2 O = 4Fe(OН) 3 ,

Ржавчина отслаивается от поверхности металла, имеет много пор, поэтому не предохраняет металл от дальнейшей коррозии. Из-за коррозии гибнет огромное количество железа и его сплавов. В XIX в., когда не существовало надежных методов борьбы с коррозией, от нее гибла половина выплавляемого металла. В современных условиях от коррозии гибнет 1/6 часть выплавляемого чугуна. Поэтому борьба с коррозией – одна из важнейших задач человечества .
Учитель . Обладают ли амфотерностью соединения железа?
(На поставленный вопрос может ответить сам учитель или заранее подготовленный, интересующийся химией ученик.)
Гидроксид железа(III) амфотерен, т. е. проявляет свойства основания в реакции с кислотами:

Fe(OH) 3 + 3HCl = FeCl 3 + 3H 2 O,

и кислотные свойства в реакциях с концентрированными растворами щелочей:

Амфотерный характер имеет и оксид железа(III), который реагирует и с кислотами, и с основными оксидами:

Fe 2 O 3 + 6HСl = 2FeCl 3 + 3H 2 O,

Учитель заостряет внимание учащихся на том, что существуют характерные реакции на соединения двухвалентного и трехвалентного железа, сопровождая свой рассказ проведением опытов.
Учитель . Для обнаружения ионов железа(III) удобно применять комплексное соединение железа, называемое желтой кровяной солью или гексацианоферратом(II) калия K 4 . При взаимодействии ионов (Fe(CN) 6) 4– с ионами Fe 3+ образуется темно-синий осадок – берлинская лазурь:

Другое соединение железа – красная кровяная соль или гексацианоферрат(III) калия K 3 является реактивом на ионы Fe 2+ .
При взаимодействии ионов (Fe(CN) 6) 3– с ионами Fe 2+ также образуется темно-синий осадок – турнбулева синь:

Перечислите основные области применения железа. Какое природное значение имеет железо?
(Учащиеся отвечают на поставленные вопросы, учитель поясняет их ответы.)
Первый ученик . Ферраты различных металлов используют в современных отраслях радиоэлектроники и автоматики .
Второй ученик . Необычные соединения образует железо с водородом, азотом и углеродом. Атомы этих неметаллов имеют размеры меньше атомов железа и легко внедряются между узлов кристаллической решетки металла, образуя твердые растворы внедрения.

Твердые растворы внедрения внешне похожи на металл, но их свойства сильно отличаются от свойств железа. Большей частью это очень твердые и хрупкие вещества. С водородом железо образует гидриды FeH и FeH 2 , с азотом – нитриды Fe 4 N и Fe 2 N, с углеродом – карбид Fe 3 С – цементит, содержащийся в чугуне и стали .
Третий ученик . Железо – это металл, использование которого в промышленности и быту не имеет пределов. Широко распространена сталь в современной технике. Оксиды и соли железа применяют в производстве красок, магнитных материалов, катализаторов, лекарственных препаратов, удобрений .
Четвертый ученик . Без железа не может функционировать организм человека, в нем содержится около 3–4 г железа, из них в крови – 2 г. Железо входит в состав гемоглобина. Недостаточное содержание железа в организме человека приводит к головной боли, быстрой утомляемости и другим заболеваниям. Железо также необходимо для роста растений. В целом по значимости железо в настоящее время является главным металлом .

Для закрепления изученного материала учащимся предлагаются следующие вопросы .

1. Каково положение железа в периодической системе химических элементов?
2. Какие степени окисления проявляет железо в соединениях?
3. Какие соединения железа обладают амфотерными свойствами?
4. Как реагирует железо с азотной и серной кислотами различной концентрации?
5. Как отличить соединения двух- и трехвалентного железа?
6. Каково применение и значение соединений железа на современном этапе развития человечества?

Если позволяет время, то можно закрепить рассмотренный материал по производству железа, используя следующие вопросы .

1. В чем преимущество прямого метода получения железа?
2. Для чего применяют обогащение руды?
3. Как обогащают руду методом флотации?
4. В чем основной смысл очистки технического железа карбонильным методом?

ЛИТЕРАТУРА

Книга для чтения по неорганической химии. Сост. В.А.Крицман, М.: Просвещение, 1984;
Фельдман Ф.Г., Рудзитис Г.Е. Химия. Учебник для 9 класса общеобразовательных учебных учреждений. М.: Просвещение, 1999;
Хомченко Г.П. Химия для поступающих в вузы. М.: Высшая школа, 1993.

Цели урока:

Образовательная:

  • На основании знаний учащихся о строении атомов металлов, об особенностях химической связи, свойствах металлов - простых веществ и их соединений, изучить особенности строения атома железа и проследить взаимосвязь строения атома железа, его свойств и свойств его соединений; познакомиться с важнейшими соединениями железа.
  • Развить познавательный интерес к предмету, реализоватьмежпредметныесвязи курсов химии, биологии, истории, географии и литературы.

Развивающая:

  • Развить умение учащихся анализировать, сравнивать, обобщать и делать выводы на основании уже имеющихся и вновь полученных знаний, как по химии, так и по другим дисциплинам.
  • Прививать навыки поисковой и самостоятельной работы.
  • Продолжить работу над формированием навыков по применению знаний при решении теоретических и практических задач (формирование предметной компетентности).

Воспитательная: Содействовать в ходе урока формированию научного мировоззрения, коммуникативной и информационной компетенции.

Тип урока: Урок усвоения новых знаний. Первичное закрепление новых знаний.

Форма организации учебной деятельности обучающихся: групповая, преобладающая работа - самостоятельная. Урок с элементамитехнологии критического мышления.

Оборудование: ПСХЭ, кристаллические решетки металлов, видеоролики, подтверждающие химические свойства железа и его соединений, реактивы (железо в порошке, сера, растворы соляной и серной кислот, сульфат меди, гидроксид натрия, красная и желтая кровяные соли, сульфат железа (II), хлорид железа (III),тиоционат калия),мультимедийное оборудование, диск с записью презентации, электронное пособие по теме "Металлы".

ХОД УРОКА

I. Организационный момент (1-2 мин)

1 стадия "Вызов".На этой фазе происходит актуализация знаний, имеющихся у учащихся, возникает интерес к обсуждаемому вопросу.

Краткое вступительное слово учителя (3 мин.).

Сегодня мы с вами продолжим путешествие в мир металлов: мы не только будем исследовать настоящее, но и заглянем далекое прошлое. Внимание посетителей Всемирной промышленной выставки в 1958 г в Брюсселе привлекло здание Атомиума.Девять громадных, диаметром 18 метров, металлических шаров, как бы парили в воздухе: восемь по вершинам куба, девятый в центре. Это была модель элементарной ячейки кристаллического альфа-железа, увеличенная в 165 млрд. раз (слайд 2)

Учитель объявляет тему урока:"Железо и его соединения" (слайд 3)

Прием "Покопаемся в памяти"

2 стадия - Осмысление новой информации. Учитель предлагает учащимся новую информацию, которую они должны усвоить. На этом этапе может быть предложена работа с текстом, заполнение матричной таблицы, чтение текста с пометками, выписка из текста.

Нахождение железа в природе.

Учащимся раздается печатный материал (Важнейшие природные соединения железа), демонстрируются минералы содержащие железо.

Работа с таблицей.

Ответить на вопросы: а) Какие классы неорганических соединений входят в состав железных минералов? б) Какой минерал имеет самое высокое значение массовой доли железа? в) В каких регионах России добывают железо?

Важнейшие природные соединения железа (слайд 4)

Название минерала Химическая формула Содержание железа
(в %)
Важнейшие месторождения
Магнитный железняк
(магнетит)
Fe 3 O 4 до 72 Ю. Урал, Магнитогорск, КМА, Кольский п-ов
Красный железняк
(гематит)
Fe 2 O 3 до 65 Кривой рог, Сев. Урал, КМА
Бурый железняк
(лимонит)
2Fe 2 O 3 *3H 2 O до 60 Керчь, Ю. Урал, Карелия, Липецкая и Тульская обл.
Шпатовый железняк
(сидерит)
FeCO 3 до 35 Ю. Урал, КМА, Керчь
Серный колчедан
(пирит)
FeS 2 до 47 Урал, Алтай, Закавказье

2. Физические свойства железа. Кристаллические решетки железа (слайд 5,6,7)

Прием "Кластер"

1. Напишите в середине листа ключевое выражение: "Физические свойства железа"

2. Начните записывать слова или предложения, которые приходят на ум в связи с данным заданием.

З. По мере того, как у вас возникают идеи, и вы записываете их, начните устанавливать те связи между идеями, которые вам кажутся подходящими.

4. Выпишите столько идей, сколько придёт вам на ум, пока не будут исчерпаны все ваши идеи.

На этом этапе урока возможно использование приема " Маркировочная таблица"(работая с текстом, учащиеся заполняют таблицу)например:

"+"
(знаю)
"-"
(Противоречит моему знанию)
"V"

(Это для меня новое)

"?"
(Не понятно)
Простое вещество с металлической связью. Обладает пластичностью и ковкостью. Железо символ планеты МАРС Имеет 4 аллотропные модификации
Железо проводит тепло и электрический ток. Самый распространенный металл на Земле
Железо имеетметаллический блеск, обладает магнитными свойствами Самый блестящий металл железо. Свет поглощается поверхностью металла, и его электроны начинают испускать свои, вторичные, волны излучения. Почему проводит тепло.

3. Положение атома железа в периодической системе и строение атома (слайд 8)

26 Fe)))) d - элемент VIII-В группы, Аr = 56 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2

4. Химические свойства железа (Слайд 9,10)

На этом этапе урока возможно использование приема "Самоанализ" с опорой на знания общих свойств металлов.

А) При нагревании взаимодействует со многими неметаллами:

* с кислородом 3Fe + 2O 2 = Fe 3 O 4

* c хлором 2Fe + 3Cl 2 = 2FeCl 3

* cсерой Fe + S = FeS

* c азотом 2Fe + N 2 = 2FeN

Б) Пары воды разлагаются раскаленным железом: 3Fe + 4H 2 O = Fe 3 O 4 + 4H 2

В)РазбавленныеHCL и H 2 SO 4 растворяют железо.

Fe + H 2 SO 4 = FeSO 4 + H 2 Fe + 2HCl = FeCl 2 + H 2

Г) С концентрированными азотной и серной кислотами при обычных условиях не реагирует (кислоты пассивируют металл)

Д) При нагревании реакция с концентрированной серной кислотой идет по уравнению 2Fe + 6H 2 SO 4 = Fe 2 (SO 4) 3 + 3SO 2 + 6H 2 O

Е) Взаимодействуетссолями: Fe + CuCl 2 = FeCl 2 + Cu

5. Свойства соединений Fe +2 и Fe +3 (слайд 11, 12)

СОЕДИНЕНИЯ ЖЕЛЕЗА
+2 +3
ОКСИДЫ
FeO - основный Fe 2 O 3 - слабо амфотерный
Общие свойства:

1. Не растворяются в воде

2. Реагируют с кислотами
FeO+2HCl = FeCl 2 + H 2 O

FeO + 2H + = Fe 2+ + H 2 O

Fe 2 O 3 + 6HCl = 2FeCl 3 +3H 2 O

Fe 2 O 3 + 6H + = 2Fe 3+ + 3H 2 O

3. Реагируют с кислотными оксидами
FeO + SO 3 -> FeSO 4 Fe 2 O 3 + 3SO 3 -> Fe 2 (SO 4) 3
4. Реагируют с восстановителями
Fe0 + H 2 = Fe + H 2 O Fe 2 O 3 + 3H 2 = 2Fe + 3H 2 O
Различия:
1. Неустойчивые соединения 1.Реагируют с щелочами:

Fe 2 O 3 +2NaOH -> 2NaFeO 2 +H 2 O

Fe 2 O 3 +2KOH+3H 2 O=2K

Гидроксиды железа
Fe(OH) 2 - основный Fe(OH) 3 - слабо амфотерный
Общие свойства:
1.Реагируют с кислотами:

Fe(OH) 2 +2HCl=FeCl 2 +2H 2 O

Fe(OH) 2 + 2H + = Fe 2+ + 2H 2 O

2.При t 0 разлагаются:

Fe(OH) 2 = FeO + H 2 O

1.Реагируютскислотами:

Fe(OH) 3 +3HCl=FeCl 3 +3H 2 O

Fe(OH) 3 + 3H + = Fe 3+ + 3H 2 O

2.При t 0 разлагаются:

2Fe(OH) 3 = Fe 2 O 3 + 3H 2 O

Различия:
1.Окисляется на воздухе:

4Fe(OH) 2 +2H 2 O+O 2 =4Fe(OH) 3

1.Реагируют с щелочами:

Fe(OH) 3 +KOH=K

Fe(OH) 3 + OH - = -

6. Лабораторные опыты. Качественные реакции на ионы Fe +2 , Fe +3 .

1. К раствору сульфата железа (II) - (FeSO 4) добавить несколько капель раствора гексацианоферрата (III) калия - красной кровяной соли K 3 . Наблюдаем выпадение осадка турнбулевой сини. Какого цвета?

Записать уравнение реакции:FeSO 4 +K 3 ->

2. К раствору хлорида железа (III) - (FeCl 3) добавить несколько капель раствора гексацианоферрата (II) калия K 4 - желтой кровяной соли. Отметить цвет осадка берлинской лазури. Записать уравнение реакции:

FeCl 3 + K 4 ->

3. К раствору хлорида железа (III) добавить несколько капель раствора тиоцианата калия (KCNS). Наблюдаем цвет раствора. Записать уравнение реакции:

FeCl 3 + KCNS ->

7. Практическое значение солей железа (слайд 13)

  1. FeSO 4 * 7H 2 O - железный купорос; применяется в текстильной промышленности при крашении тканей, в сельском хозяйстве для протравы семян и борьбы с вредителями сельского хозяйства, получение чернила.
  2. FeCl 2 - хлорид железа (II); применяется для получения чистого железа, компонент антианемических препаратов, катализатор в органическом синтезе.
  3. FeCl 3 - хлорид железа (III); применяется в технике как окислитель в производстве органических красителей, в текстильной промышленности - для протравки тканей при подготовке их к окраске, в медицине как кровоостанавливающее средство, компонент тонирующих растворов в фотографии, коагулянт при очистке воды, для определения фенолов.
  4. Fe 2 (SO 4) 3 - сульфат железа (III); применяется как химический реактив при гидрометаллургической переработке медных руд, как коагулянт при очистке сточных вод, для получения квасцов, пигмента Fe 2 O 3 .

3 стадия - Рефлексия, Размышление. Происходит осмысление всей информации, полученной на 2 стадии. Размышление и обобщение того, "что узнал"ребенок на уроке по данной проблеме. На этой стадии может быть составлен опорный конспект в тетради учащегося. Кроме того, могут быть осуществлены:

а) возврат к стадии вызова;

б) возврат к ключевым словам;

в) возврат к перевернутым логическим цепочкам;

г) возврат к кластерам.

Возможно использование приемов: "Перепутанные логические цепочки"

или "Синквейн":

  • на первой строчке тема называется одним словом (существительным)
  • вторая строчка - это описание темы в двух словах (прилагательных).
  • третья строка-описание действия в рамках темы тремя глаголами.
  • четвертая - это фраза из четырех слов, показывающая отношение к теме.
  • пятая - синоним из одного слова, который повторят суть темы.

или "Конструирование текста" (слайд 14)

Задание: Из предложенных формул соединений составьте генетический ряд Fe +2 (для первого варианта) и генетический ряд Fe +2 (для второго варианта).

Fe(OH) 2 , Fe, Fe(OH) 2 , FeCl 3 , Fe 2 O 3 , FeCl 2 , FeO

8. Домашнее задание (слайд 14)

1. Написать уравнения химических реакций, с помощью которых можно осуществить следующие превращения:

Fe -> FeCl 3 -> Fe(OH) 3 -> Fe 2 O 3 -> Fe -> FeSO 4 -> Fe(OH) 2 -> FeOa Fe -> Fe 3 O 4

2. Написать уравнения реакций ступенчатого гидролиза раствора Fe 2 (SO 4) 3 .

3. В уравнении химической реакции расставить коэффициенты методом электронного баланса: Fe 2 O 3 + KOH + KNO 3 -> K 2 FeO 4 + KNO 2 + H 2 O